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Abstract 
There is increasing recognition that the process of species divergence is not uniform across the tree of life, and that newly diverged taxa may 
differ in their levels of phenotypic and genetic divergence. We investigate the relationship between phenotypic and genetic differentiation across 
the speciation continuum using sister pairs from a large ecologically diverse radiation of Australian skinks, the Tribe Eugongylini, a high-quality 
alignment of genomic sequence data, and morphometric data for 90 lineages across the radiation. Based on the framework proposed by Struck 
et al. (2018) for comparative study of species divergence, we used latent class regression to test for multiple speciation “trajectories.” We found 
evidence for multiple relationships between genetic divergence and morphological disparity for recently diverged sister taxa, which we summa-
rize into 2 broad patterns. One of these patterns is characterized by relatively rapid morphological differentiation for pairs with greater disparity in 
environmental variables, consistent with expectations of ecological speciation. The second pattern shows accumulation of both morphological 
and genetic differences in proportion to each other, consistent with gradual speciation. Our study shows how heterogeneity in speciation pro-
cesses can be captured in a comparative framework.
Keywords: ecological speciation, cryptic speciation, morphological evolution, genetic divergence, sister pairs

Introduction
The relationship between morphological variation, ecolog-
ical divergence, and evolutionary independence during the 
process of speciation has been the subject of much debate. 
Taxonomists typically use morphological differentiation as a 
proxy for reproductive isolation between lineages; however, 
there is increasing recognition that many morphologically 
indistinguishable lineages are also strongly reproductively 
isolated (Bickford et al., 2007; Singhal et al., 2018). “Cryptic 
species” identified primarily from genetic data appear to be 
surprisingly common in nature (Chenuil et al., 2019; Fiser et 
al., 2018). Although ecological speciation, driven by adaptive 
divergence to different niches, has been widely observed and 
has strong theoretical support (Shafer & Wolf, 2013; Sobel et 
al., 2010), the existence of cryptic species suggests that species 
can arise in the absence of divergent adaptation (Rundell & 
Price, 2009; Struck & Cerca, 2019).

Theoretical models have shown that mutations which 
are selectively neutral, beneficial, or slightly deleterious can 
become fixed in allopatric populations, which can result in 
low fitness when combined in a hybrid (Nosil & Flaxman, 
2011). Such incompatibilities may involve few genes with 
large phenotypic effects or many genes with small effects, 
and the probability of incompatible substitutions arising in 
diverging lineages can increase exponentially with divergence 

time (Dagilis et al., 2019; Orr & Turelli, 2001). Reduced 
fitness in hybrids may be due to an intermediate phenotype 
which is unfit in either parent environment (extrinsic incom-
patibility) or disruptions to key metabolic or developmental 
processes (intrinsic incompatibility) (Seehausen et al., 2014; 
Sobel et al., 2010). Leaving aside the possibility of rapid 
chromosomal speciation (Bogdanov et al., 2023; Potter et al., 
2017; Sobel et al., 2010), cryptic species may arise when two 
geographically isolated lineages accumulate many small-effect 
genomic incompatibilities over a long period of time leading 
to intrinsic incompatibility on secondary contact (Coughlan 
& Matute, 2020; Mikkelsen & Irwin, 2021). Ecological 
speciation might proceed more rapidly due to selection on 
a small number of large-effect genes resulting in extrinsic 
incompatibility, with intrinsic incompatibilities arising later 
once the two lineages have been evolving independently for 
some time (Matsubayashi & Yamaguchi, 2022; Nosil et al., 
2009; Seehausen et al., 2014).

A key prediction of this view of divergence mechanisms is 
that the process of speciation is likely to proceed at different 
rates depending on the eco-evolutionary context of the lin-
eages in question (Scopece et al., 2007; Shin & Allmon, 2023). 
Struck et al. (2018) formalized this notion in a framework 
for understanding and investigating speciation trajectories. 
They predict that while most species pairs will accumulate 
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phenotypic differences in proportion to time since divergence, 
some pairs will have proportionally very high morphologi-
cal disparity (e.g., in adaptive radiation), while others will 
have very low morphological disparity relative to divergence 
time, as expected in cases of morphological stasis. These 
three broad patterns represent what we refer to as “grad-
ual” speciation, ecological speciation, and cryptic speciation, 
respectively (Figure 1). These different processes may lead to 
heterogeneity in the relationship between morphological dis-
parity and genetic divergence within and between taxonomic 
groups (Wollenberg Valero et al., 2019). This heterogeneity 
highlights the need to consider genomic, morphological, and 
ecological divergence axes in the characterization of biodiver-
sity (Bolnick et al., 2023; Johannesson et al., 2024).

We apply this model to our study system, a diverse radia-
tion of Australian lizards, to assess the patterns of divergence 
in closely related lineages. Lizards have been recognized as 
excellent systems for the study of speciation due to their high 
eco-morphological diversity, easily measured adaptations 
(which often involve morphometric changes), and low disper-
sal capacity which results in strong phylogeographic structur-
ing (Camargo et al., 2010; Losos, 2009; Nunes et al., 2022; 
Wollenberg Valero et al., 2019). We utilized recently pub-
lished data on the Australian radiation of skinks, the Tribe 
Eugongylini (Shea, 2021), including a lineage-level coalescent 
phylogeny (Bragg et al., 2024; Ivan et al., 2021). This tribe is 
known to contain instances of both cryptic speciation (Afonso 
Silva et al., 2017; Singhal et al., 2018) and adaptive evolu-
tion through morphological convergence (Blom et al., 2016; 
Dolman & Stuart-Fox, 2010). This radiation, dated to the early 
Miocene (Oliver & Hugall, 2017), includes approximately 
125 taxonomically recognized species across 18 genera, and 
an additional 75 taxonomically unrecognized intraspecific 
lineages have been identified from phylogeographic evidence 
(Bragg et al., 2024). The Tribe includes species inhabiting a 
wide range of habitats across the Australian continent, from 
the Tasmanian snow skinks (Carinascincus), to the rainbow 
skinks of the wet tropics (Carlia), and the snake-eyed skinks 

which specialize on rocky crevices and arboreal substrates in 
the arid zone (Cryptoblepharus) (Blom et al., 2016; Wilson 
& Swan, 2017). Many genera have recently undergone rig-
orous taxonomic revisions (e.g., Horner, 2007) and the rate 
of new species being recognized and described has plateaued 
following a rapid increase in the past decades (Flanagan et al., 
2024), giving confidence that any taxonomically unrecognized 
lineages are likely to be truly morphologically undiagnosable 
(Chenuil et al., 2019; Shin & Allmon, 2023)—meaning that 
they cannot be distinguished by morphological traits alone 
(see Supplementary Text S1 for details of this terminology). A 
combination of well-defined intraspecific lineages and diver-
gences spanning the “gray zone” of speciation—a range of 
divergence estimates in which species status, judged by repro-
ductive isolation, is inconsistent across taxa (Roux et al., 
2016; Singhal & Bi, 2017; Singhal et al., 2018)—mean that 
taxa can be sampled from across the speciation continuum 
in this system rather than simply comparing “end products” 
(i.e., fully reproductively isolated species) (Matsubayashi & 
Yamaguchi, 2022; Sobel et al., 2010). We used a sister pairs 
approach to look at the relationship between neutral genetic 
divergence and morphological disparity across the phylogeny 
(Freeman et al., 2023; Johannesson et al., 2024; Nunes et al., 
2022; Struck et al., 2018). We then used latent class regres-
sion to identify groups of species pairs with different ratios 
between these two variables to test the hypothesis of multi-
ple speciation trajectories. This strategy allows us to avoid 
assuming that all pairs of taxa must be on the same speciation 
path, a limitation which has hindered previous comparative 
studies of speciation (Bolnick et al., 2023; Stankowski & 
Ravinet, 2021).

Methods
Pair selection
Sister-taxon pairs (recognized species or intraspecific lineages) 
were selected based on the lineage-level maximum clade cred-
ibility coalescent phylogeny of the Australian Eugongylini 
presented in Bragg et al. (2024). First, tips with insufficient 
data were excluded, and sister pairs were then selected from 
the remaining tips. Bragg et al. (2024) present exon capture 
data from the same set of individuals as published in Ivan et 
al. (2021); we therefore utilized the high-quality alignments 
of concatenated exons from Ivan et al. (2021) to estimate 
sequence divergence, with assignments of individuals to lin-
eage level taken from Bragg et al. (2024) (Supplementary 
Table S1). Any tips without sequences in the alignment of 
Ivan et al. (2021) were excluded.

All lineages represented in the phylogeny are distinguish-
able based on morphology, geographic distribution, or 
both. Across the clade, intraspecific lineages within a single 
described species are defined by nonoverlapping geographic 
ranges (see Bragg et al. (2024) for details). In the absence 
of a large number of genotyped vouchered specimens, we 
used museum vouchers morphologically identified to species 
level for our morphometric data set. We created polygons 
based on extensive published data (Afonso Silva et al., 2017; 
Bell et al., 2010; Bragg et al., 2024; Chapple et al., 2011a, 
2011b; Dissanayake et al., 2022; Dolman & Moritz, 2006; 
Donnellan et al., 2009; Dubey & Shine, 2010; Haines et al., 
2014; Horner, 2007; Horner & Adams, 2007; Moussalli et 
al., 2009; Potter et al., 2016, 2018, 2019; Rittmeyer, 2014) 
to define the geographic distributions of intraspecific lineages, 
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Figure 1. Speciation trajectories. Diverging lineages may show a pattern 
of high morphological disparity and relatively low genetic divergence 
(ecological speciation), low morphological disparity with relatively high 
genetic divergence (cryptic speciation), or may accumulate genetic and 
morphological changes in proportion to one another (gradual speciation). 
Cryptic species pairs may accelerate their rate of morphological 
differentiation on secondary contact due to reinforcement (dashed curve, 
bottom right). Ecological species pairs may slow down their rate of 
morphological differentiation once adaptation to a new niche is complete 
(dashed curve, top left). Figure represents the conceptual framework of 
Struck et al. (2018).
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and vouchered museum specimens were then assigned to lin-
eages based on these polygons (Supplementary Figure S1). 
Vouchers which could not be confidently assigned to a lin-
eage were excluded. Any tips with fewer than five vouchered 
specimens across the collections of the Australian National 
Wildlife Collection (ANWC), Australian Museum (AMS), 
Queensland Museum (QM), and South Australian Museum 
(SAMA) were excluded.

After filtering, we selected all available pairs of closest rel-
atives for pairwise comparisons for two reasons. First, this 
ensured that all pairs represented statistically independent 
comparisons (each tip was only included once and no over-
lapping phylogenetic paths existed between pairs of taxa) 
without introducing bias through deliberate selection of par-
ticular pairs (Harvey & Purvis, 1991; Lanfear et al., 2010). 
Secondly, analyzing differences between sister pairs of taxa 
reduces the impact of the node density effect on estimation 
of genetic divergence (i.e., underestimation of long branch 
lengths due to sparse sampling of taxa and/or multiple sub-
stitutions at the same site) (Hugall & Lee, 2007; Lanfear et 
al., 2010). The exception to this rule was for the pair Carlia 
munda ETE and C. munda broad: C. munda ETE was cho-
sen in preference to the closest relative C. munda melville as 
more vouchered specimens were available for this lineage. In 
total, 45 pairs were selected for analysis (Figure 2). Pairs were 
classified as either morphospecies or morphologically undiag-
nosable based on published taxonomic descriptions (Figure 2; 
Supplementary Table S2). Morphospecies pairs are taxonom-
ically described species with at least one diagnostic morpho-
logical character, while morphologically undiagnosable pairs 
are undescribed intraspecific lineages or described taxa with-
out diagnostic morphological characters (see Supplementary 
Text S1 for further details).

Genetic divergence
Neutral genomic divergence was estimated as the number of 
synonymous substitutions per site between taxa in a pair. We 
obtained unbiased estimates of branch length between pairs 
using a triplet approach, where a triplet includes a pair of 
taxa and an outgroup. Genetic data were taken from the 
alignment of 1268 filtered and concatenated exons in Ivan et 
al. (2021). For each pair, we chose the closest relative to the 
most recent common ancestor of the pair in the phylogeny 
as an outgroup; where the closest relative was a clade, one 
tip was randomly chosen from this clade as the outgroup. 
For each taxon in a triplet, all sequences in the alignment 
were extracted and used for analysis. The number of indi-
viduals per taxon ranged from one to eight with a mode of 
two (Supplementary Table S1); however, the lineage-level 
phylogeny of Bragg et al. (2024) has a single tip per lineage. 
Therefore, we used IQ-Tree2 (Bui et al., 2020) to estimate 
tree topology between individuals for taxa with multiple 
individuals, and manually rooted these triplet trees on the 
outgroup clade. One triplet (Cryptoblepharus ruber a2 and 
Cryptoblepharus megastictus, with Cryptoblepharus ruber 
a1a3 as the outgroup) was excluded from further analysis as 
the two ingroup taxa did not form reciprocally monophyletic 
clades of individuals.

The tree topology for individuals for each triplet and the 
aligned sequences were then used as input for codeml in 
PAML4 (Yang, 2007) to estimate synonymous substitution 
rate under the branch model. The analysis was constrained 
to apply a single codon evolution model to all individuals in 

a taxon. The mean branch length between sister pairs based 
on the expected number of synonymous substitutions per 
site was calculated by successive averaging of sister branch 
lengths from tip to root (Ritchie et al., 2022), and we used this 
value as the measure of genetic divergence (Supplementary 
Table S4). There was a strong correlation between genetic 
divergence calculated from the triplets in PAML4 and branch 
length in the coalescent phylogeny from Bragg et al. (2024) 
(Supplementary Figure S2).

Morphological disparity
For each taxon included in the set of pairs, at least five and 
up to 10 vouchered specimens (Supplementary Table S1) were 
measured for the following set of morphometric traits: snout-
vent length (SVL), forelimb length, hindlimb length, trunk 
length, head length, head depth, head width, hand length, and 
foot length. These traits were chosen as they have been shown 
to be ecologically relevant in skinks and other lizard taxa 
(Blom et al., 2016; Cordero et al., 2021; Dolman & Stuart-
Fox, 2010; Mahler et al., 2010). Although many species dif-
fer in color and pattern as well as morphometric traits (e.g., 
Figure 3B–D), we were unable to include these characters 
in our analysis as coloration is poorly preserved in museum 
spirit collections (Sistrom et al., 2013). Forelimb length and 
hindlimb length were calculated as the sum of two and three 
linear measurements along the limbs, respectively; all other 
traits were taken as simple linear measurements. Specimens 
used in the morphometric data set were not genotyped but 
were assigned to intraspecific lineages based on geographic 
distribution (see Pair selection and Supplementary Figure 
S1). Morphological measurements for all individuals can be 
found in Supplementary Table S3. To correct for body size-
dependent increases in variance, we took the natural log of all 
measurements to use in further calculations.

The Bhattacharyya distance, a generalization of the 
Mahalanobis distance which allows the standard deviations 
of each sample to differ (Bhattacharyya, 1946), was used to 
calculate morphological disparity between the taxa in each 
pair with the package fpc (Hennig, 2020) in R (R Core Team, 
2021) (Supplementary Text S2). This definition of morpho-
logical disparity allows for morphologically undiagnosable 
taxa to have high morphological disparity if the means of 
the multivariate normal distributions are far apart but the 
distributions overlap. We controlled for potential effects of 
allometry due to differences in sample age profiles by taking 
the residuals of a linear regression of morphological disparity 
against a measure of difference in median age between taxa in 
a pair (see Supplementary Text S3 for details).

The variance of morphological disparity is expected to 
increase over the divergence time between sister pairs of taxa. 
To correct for heteroscedasticity due to time dependence, we 
used genetic divergence of the pair as an indicator of their 
depth of divergence and divided the age-corrected estimates 
of morphological disparity by the square root of the genetic 
divergence of the pair. This approach is standard in sister pair 
comparisons (Welch & Waxman, 2008). These estimates of 
morphological disparity, corrected for the specimen maturity 
(“age”) profile of the specimens and heteroscedasticity, were 
used in all subsequent analyses.

Quantifying patterns of divergence
Each taxon pair provides us with one independent contrast 
of genetic divergence and morphological disparity. As a first 
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pass, we used linear regression to test for an overall relation-
ship between genetic divergence and morphological disparity 
across all contrasts. We also compared the degree of morpho-
logical disparity between morphospecies pairs and morpho-
logically undiagnosable pairs using a Wilcoxon rank sum test.

We used the R package Flexmix (Gruen & Leisch, 2008) 
to investigate the relationship between genetic divergence 
and morphological disparity among pairs. Flexmix fits a mix-
ture of linear regression models to the data, in order to test 

whether there are different clusters of data points supporting 
different regression models. We used Flexmix to fit a mixture 
of 1–10 linear regression models (i.e., 1–10 clusters) to the 
contrasts, where each regression model has morphological 
disparity as response variable and genetic divergence as inde-
pendent variable. The intercept of each regression model was 
constrained to the origin, because we expect, on average, no 
morphological difference between pairs that are not genet-
ically diverged. For each number of regression models, we 
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Figure 2. Process of pair selection. Tips that were excluded from the analysis based on limited specimens or sequence availability are shown in gray. 
From the remaining tips, pairs of closest relatives were selected for inclusion in the analysis—these are highlighted (bold) in green (morphologically 
undiagnosable pairs) and pink (morphospecies pairs). Black tips show taxa that were retained during pair selection but are not part of a pair. Phylogeny 
is taken from Bragg et al. (2024).
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ran the EM (Estimate-Maximize) algorithm for a maximum 
of 1,000 iterations. Model fit was compared using Bayesian 
information criterion. We replicated the analysis with and 
without inclusion of the single between-genera pair, and using 
uncorrected morphological disparity estimates, to gauge sen-
sitivity of the results to these factors (Supplementary Text S4).

Ecological correlates of divergence patterns
The best-fit model from the Flexmix analysis includes two 
distinct clusters of contrasts showing different patterns of 
divergence (see Results). We sought to test what factors may 

be driving these differences. We hypothesized that pairs with a 
higher ratio of morphological disparity to genetic divergence 
may also have higher ecological disparity if morphological 
divergence is driven by adaptation to different niches.

We used several measures of ecological disparity to test this 
hypothesis (Supplementary Table S4). We obtained ecologi-
cal data for each named species from a curated set of species 
distribution points taken from the Atlas of Living Australia 
(ALA) via the ALA Spatial Portal (ALA, 2024). For short-
range endemic taxa and those with few points in ALA, we 
supplemented distribution points with genotyped field records 
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Figure 3. Results of Flexmix analysis with two clusters. Points are labeled according to Taxon 1 in the pair as per Supplementary Table S1. Colors 
show cluster assignment. Morphospecies pairs are shown with triangles and morphologically undiagnosable pairs are shown with circles. Insets 
show photographic examples of the taxa in four representative pairs: (A) Carinascincus pretiosus (top) and Ca. metallicus (bottom); (B) Eroticoscincus 
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concinna (bottom). Images provided by Wesley Read (A, B, C) and Jordan Mulder (D), and are reproduced in Supplementary Figure S7 at larger size. 
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(Bragg et al., 2024). For intraspecific lineages, distribution 
points were assigned to a lineage if they fell in the distribution 
polygon of that lineage (see Pair selection and Supplementary 
Figure S1). Any points which could not be assigned to a lin-
eage were excluded. Duplicate records of a single species at a 
single location were excluded. Ecological variables relating to 
climate (temperature and precipitation), topography and hab-
itat type were chosen as they have previously been linked to 
survival and adaptation of lizards in Australia and elsewhere 
(Llewellyn et al., 2018; McDonald-Spicer, 2020; Tarkhnishvili 
et al., 2013) (Supplementary Text S5).

For each of the abiotic ecological variables, we calculated 
the mean for each taxon by averaging across all occurrence 
records for that taxon and then found the difference of means 
between taxa in a pair as a measure of disparity for that 
variable. Additionally, we combined all abiotic variables and 
used all the points to create a composite measure of abiotic 
environmental disparity. This measure was calculated as the 
Bhattacharyya distance (Bhattacharyya, 1946) between taxa 
under the assumption that variables correlate equally between 
species within each pair, as described for morphological dis-
parity in Supplementary Text S2. We used vegetation type to 
measure broad-scale habitat disparity between taxa in each 
pair. For each taxon, points with unknown vegetation type 
were excluded, and relative abundance in each vegetation 
type was calculated by dividing the number of points in each 
vegetation type by the total number of points for the taxon. 
Habitat disparity was then calculated as the Bray–Curtis dis-
similarity (Bray & Curtis, 1957) between the taxa in the pair. 
For each of these measures of ecological disparity, we calcu-
lated the ratio of ecological disparity to genetic divergence for 
each pair and used a Wilcoxon rank sum test to test for dif-
ferences between the clusters identified by the Flexmix analy-
sis. Finally, we used a combination of field guide descriptions 
of recognized species (Cogger, 2014; Wilson & Swan, 2017) 
and field observations of intraspecific lineages to classify the 
microhabitat of taxa in each pair as same or different. We 
tested for differences in microhabitat similarity between the 
clusters with Fisher’s exact test.

Results
Disparity calculations for all pairs are found in Supplementary 
Table S4. Across all contrasts, morphological disparity was 
not predicted by genetic divergence (p = .62). There was no 
significant difference in the degree of morphological disparity 
in morphologically undiagnosable pairs compared to mor-
phospecies pairs (W = 201, p = .50).

The best-fitting model found by the Flexmix analysis 
had two clusters (Supplementary Table S5), and cluster 
assignment was unchanged regardless of whether the more 
divergent, between-genera pair was included in the anal-
ysis (Supplementary Figure S3, Supplementary Table S6). 
The first cluster (shown in purple in Figure 3) included 18 
of the 44 pairs and showed a strong relationship between 
genetic divergence and morphological disparity (p < .001, 
R2 = 0.94). The second cluster (shown in teal in Figure 3) 
contained the remaining 26 pairs and showed a weaker rela-
tionship between the two variables (p < .001, R2 = 0.53) 
and, on average, greater morphological disparity relative to 
genetic divergence. To avoid confusion, we will refer to these 
clusters as “teal” and “purple” according to their colors in 
Figure 3. There was no significant difference in the number of 

morphologically undiagnosable pairs between the two clus-
ters (Fisher’s exact test, p = .11), and the two clusters are dis-
tributed evenly across the phylogeny (Supplementary Figure 
S6). Results were qualitatively similar when the analysis was 
run using uncorrected morphological disparity estimates 
(Supplementary Text S4).

The teal cluster contains two pairs with extremely low lev-
els of morphological disparity relative to genetic divergence: 
Pygmaeascincus timlowi–Py. sadlieri and Menetia concin-
na–M. alanae. These pairs are included in the teal cluster 
despite not conforming to the same pattern as other teal clus-
ter pairs as the residual variance in the purple cluster is very 
small, meaning that model fit is maximized when they are 
included in the teal cluster with high residual variance. We 
consider these pairs to be outliers as they do not conform to 
either of the broad evolutionary trends identified in this clade. 
Pygmaeascincus timlowi–Py. sadlieri has low posterior prob-
ability for the teal cluster (PP = 0.66), and several other pairs 
which are intermediate between the two clusters also have 
low posterior probability for cluster assignment (e.g., Carlia 
pectoralis–C. inconnexa, C. triacantha–C. isostriacantha, 
Lygisaurus tanneri–Ly. malleolus, Morethia storri wte–Mo. 
storri ete-kim, and Saproscincus rosei north–S. rosei south; 
Supplementary Table S7).

We found that the teal cluster, which shows higher morpho-
logical disparity relative to genetic divergence, also showed 
significantly greater ecological disparity between sister taxa 
for several variables compared to the purple cluster (Figure 
4). Relative to genetic divergence, composite abiotic disparity 
(W = 131, p = .01), elevation (W = 141, p = .03), and topo-
graphic slope (W = 143, p = .03) had significantly greater 
disparity for pairs in the teal cluster than the purple cluster. 
While vegetation, precipitation seasonality, and temperature 
seasonality also showed higher mean disparity, these differ-
ences were not significant. Likewise, although pairs in the teal 
cluster were more likely to have different microhabitats than 
those in the purple cluster, this difference was not significant. 
Disparity in annual mean temperature and precipitation did 
not differ between clusters.

Discussion
Struck et al. (2018) proposed a conceptual framework that 
uses the relationship between genetic divergence and morpho-
logical disparity to identify cryptic species. Here we extend 
their framework to categorize three broad type of relation-
ships between genetic divergence and morphological dis-
parity, corresponding to three different modes of speciation. 
These three categories are an oversimplification, but they are 
a useful lens through which to interpret the results of our 
analysis. Our results show a lack of a simple predictable rela-
tionship between morphological disparity and genetic diver-
gence across the Australian Eugongylini, which allows us to 
reject the hypothesis that all pairs of taxa are evolving along 
a similar trajectory. Similar results showing unpredictable or 
inconsistent relationships between eco-morphological and 
genetic divergence across pairs of taxa have been reported in 
some recent studies (e.g., birds (Freeman et al., 2023); snails 
(Johannesson et al., 2024)). Instead, the best-fitting model 
shows two clusters of pairs within the data set, indicating that 
there are likely to be multiple speciation trajectories in this 
group. The mean ratio of morphological disparity relative to 
genetic divergence is higher in the teal cluster than the purple 
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cluster, and the former simultaneously shows strong abiotic 
environmental disparity. The low posterior probability of 
cluster assignment for some intermediate pairs also suggests 
that the divergence trajectories exist on a continuous spec-
trum and are not discrete processes. Our results are consistent 
with a growing body of literature arguing the importance of 
considering multiple axes of divergence and accounting for 
variation between lineages when characterizing speciation 
patterns at the clade level (Bolnick et al., 2023; Freeman et 
al., 2023; Johannesson et al., 2024; Kiebacher & Szövényi, 
2024; Korshunova et al., 2019; Matsubayashi & Yamaguchi, 
2022; Stankowski & Ravinet, 2021).

Ecological speciation, as defined here, occurs when  
interspecific-level morphological disparity is seen at intraspe-
cific levels of genetic divergence (Struck et al., 2018). Aside 
from the two pairs with extremely slow rates of morpho-
logical evolution (Pygmaeascincus timlowi–Py. sadlieri and 
Menetia concinna–M. alanae; Figure 3D) all pairs in the teal 

cluster have genetic divergence estimates equal to or less than 
the maximum level of genetic divergence shown by intra-
specific lineage pairs (0.014 synonymous substitutions per 
site). Several of these pairs, such as Acritoscincus trilinea-
tus sa–A. trilineatus wa, also have morphological disparity 
estimates which are comparable to the between-genera pair 
Harrisoniascincus zia–Eroticoscincus graciloides (Figure 3B). 
The teal cluster therefore conforms to expectations of eco-
logical speciation. This is further supported by the fact that 
pairs in the teal cluster generally have greater ecological dis-
parity relative to genetic divergence, which is consistent with 
divergent adaptation to different environments, although the 
functional link between the morphological and ecological 
variables measured here is not known. Two of these three 
significantly higher ecological disparity variables are related 
to topography (elevation and slope), raising the intriguing 
possibility that rapid speciation in the Tribe Eugongylini may 
be driven by elevation gradients. Isolation-by-ecology along 
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Figure 4. Contrasts in ecological variables for pairs in the two clusters. The y-axis of each panel (except Microhabitat—bottom right) shows the ratio of 
ecological disparity to genetic divergence. Cluster 1 (purple, left) contains 18 pairs and cluster 2 (teal, right) contains 26 pairs.
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elevational gradients as a driver of speciation has been sup-
ported in some other taxa (e.g., insects (Polato et al., 2018); 
plants (Steinbauer et al., 2016)) and would be consistent with 
the high levels of endemism seen in topographically complex 
regions in Eugongyline skinks (Rosauer et al., 2015).

Cryptic speciation can likewise be thought of as a case 
where species-level genetic divergence is seen between taxa 
with within-species levels of morphological disparity (Struck 
et al., 2018). Lineages may be morphologically undiagnosable 
for several reasons, including long-term morphological sta-
sis, recent divergence, and convergence, but only the first of 
these leads to cryptic speciation as defined in this framework 
(Chenuil et al., 2019; Fiser et al., 2018; Struck et al., 2018). 
Practically, this means that cryptic species pairs should show 
no relationship between genetic divergence and morphologi-
cal disparity, as was observed in a cryptically evolving clade 
of frogs in southern India (Ramesh et al., 2020).

The purple cluster shows a positive correlation between 
morphological disparity and genetic divergence. This is more 
consistent with the predictions of gradual speciation (i.e., 
genetic and morphological changes accumulating in pro-
portion to each other) than cryptic speciation, for which we 
would expect both low mean morphological disparity and no 
significant relationship between morphological disparity and 
genetic divergence. The morphologically undiagnosable pairs 
included in our analysis had significantly lower genetic diver-
gence than the morphospecies pairs and did not show any 
pattern of low morphological divergence relative to genetic 
divergence. For this reason, these pairs are unlikely to repre-
sent “cryptic species” (i.e., species generated by the process of 
cryptic speciation) but are instead examples of recent diver-
gence (Fiser et al., 2018). The two outlier pairs in the teal 
cluster with very low rates of morphological divergence may 
be examples of cryptic speciation, but no definitive pattern 
can be established from such a small number of data points.

It has been proposed that, for well-studied clades where 
α-taxonomy is reasonably complete, the level of morpholog-
ical differentiation seen between described species should be 
a good guide for what is typical for species-level divergence 
(Chenuil et al., 2019; Struck et al., 2018), and that this stan-
dard could be used to designate species pairs as having more 
or less phenotypic disparity than expected for their level of 
genetic divergence (Struck & Cerca, 2019). However, for the 
species pairs in this data set, many morphospecies pairs are 
distinguished by characters which are unlikely to have any 
adaptive significance, such as subtle differences in scalation 
(e.g., Greer, 1991; Horner, 2007). There is no difference in 
the levels of morphological disparity shown by taxonomi-
cally recognized pairs and morphologically undiagnosable 
pairs in this data set, showing that phenotypic recognition 
of taxa is not necessarily correlated with eco-morphological  
disparity. While traits such as color and patterning are likely 
to be under selection (Olsson et al., 2013), and aspects of 
scalation have been correlated with ecological variables 
(Calsbeek et al., 2006), many scale characters shown to 
reliably track species boundaries in reptiles are likely to be 
evolving under neutral processes (Martinez-Castro et al., 
2021). It is possible that the subtle, nonadaptive characters 
which are often used to delimit the species in this data set 
may have become fixed in diverging lineages through neu-
tral processes and may therefore be a kind of proxy for 
neutral genetic divergence. If this is the case, then simply 
being a “morphospecies” is unlikely to provide insight into 

the relative importance of divergent adaptation compared to 
drift or stabilizing selection in the speciation process. Some 
recent studies have noted that minor phenotypic differences 
between otherwise highly similar taxa can facilitate taxo-
nomic recognition but do not negate general patterns of 
eco-morphological stasis arising from the cryptic speciation 
process (Korshunova et al., 2019; Shin & Allmon, 2023). 
Morphometric traits, such as the ones used to estimate mor-
phological disparity in this study, may be informative of an 
organism’s ecology but poor diagnostic tools as they often 
form a cline within and between taxa along abiotic (e.g., lat-
itudinal) gradients (Archie, 1985; Forsman & Shine, 1995; 
Laiolo & Rolando, 2001; Padial et al., 2010). Several of our 
morphologically undiagnosable pairs are sampled across 
such gradients which may explain their high morphological 
disparity estimates. We suggest that, in general, species need 
not be “truly cryptic” (i.e., a complete absence of distin-
guishing phenotypic traits) to be evolving under the cryptic 
speciation process as defined here.

We have demonstrated how the framework of Struck et al. 
(2018) can be applied to an empirical system to identify het-
erogeneity in divergence patterns across a radiation. Instead 
of pairs conforming to a single predictable relationship 
between morphological and molecular divergence, we show 
that pairs of named species and within-species pairs distrib-
ute in clusters that are either consistent with gradual acqui-
sition of morphological and molecular divergence, or with 
a relatively more rapid rate of morphological change. Post 
hoc comparison of ecological disparity between these clusters 
shows that the more rapid rate of morphological divergence 
may be associated with topographic variables. In spite of the 
prior recognition of cryptic diversity within this clade, we did 
not find evidence for long-term morphological stasis leading 
to cryptic speciation. Our study highlights the value of com-
parative methods in characterizing divergence patterns across 
a clade to provide context to individual population histories 
(Johannesson et al., 2024).
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