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Somatic mutations can have important effects on the life history, ecology, and
evolution of plants, but the rate at which they accumulate is poorly under-
stood and difficult to measure directly. Here, we develop a method to
measure somatic mutations in individual plants and use it to estimate the
somatic mutation rate in a large, long-lived, phenotypically mosaic Eucalyp-
tus melliodora tree. Despite being 100 times larger than Arabidopsis, this tree
has a per-generation mutation rate only ten times greater, which suggests
that this species may have evolved mechanisms to reduce the mutation
rate per unit of growth. This adds to a growing body of evidence that illu-
minates the correlated evolutionary shifts in mutation rate and life history
in plants.
1. Background
Trees grow from multiple meristems which contain stem cells that divide to
produce the somatic and reproductive tissues. A mutation occurring in a mer-
istematic cell will be passed on to all resulting tissues, potentially causing an
entire branch including leaves, stems, flowers, seeds, and pollen to have a gen-
otype different from the rest of the plant [1,2]. These different genotypes may
lead to phenotypic changes, potentially with important consequences for
plant ecology and evolution [3–8]. For example, somatic mutations could
explain how long-lived plants adapt to changing ecological conditions [9],
and are thought to influence long-term variation in the rates of evolution and
speciation among plant lineages [10]. Somatic mutations can degrade genetic
stocks used in agriculture and forestry [11,12], confer herbicide resistance to
weed species, [13] and have been linked to declining plant fitness in polluted
areas [14]. However, despite the importance of somatic mutations and recent
progress in understanding them [1,2,15–18], there remain significant analytical
challenges in inferring somatic mutation rates from sequencing data in plants.

We present a solution to the challenges of measuring the somatic mutation
rate that leverages the phylogeny-like structure of the plant itself to estimate
the genome-wide somatic mutation rate of the individual. Our strategy has
three key features. First, we sequence the full genome of three biological repli-
cates of eight branch tips. Using three biological replicates per branch tip
significantly reduces the false-positive rate, because many types of error (e.g.
sequencing error or mutations induced during DNA extraction or library
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Figure 1. The Eucalyptus melliodora individual sequenced in this study. The eight branch tips sampled are shown by numbered green circles with internal nodes of
the tree shown as letters in blue circles. Circles with dashed outlines are from the far side of the tree. Pink lines trace the physical branches that connect the sampled
tips. The herbivore-resistant branch comprises samples 1–3.
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preparation) are very unlikely to appear at the same position in
all three replicates, making it easy to distinguish these errors
from biological signal. Second, our strategy includes an inbuilt
positive control, because we can ask whether the phylogenetic
tree we reconstruct from the set of putative somatic mutations
across the eight branch tips reflects the known physical struc-
ture of the tree (i.e. whether phylogeny correctly reconstructs
ontogeny, as is expected for plant development in most
cases, but see below). Third, the approach allows us to estimate
the false-negative rate and the false-discovery rate of our
inferences directly from the replicate samples (see below).

We applied this approach to a long-lived yellow box
(Eucalyptus melliodora) tree, notable for its phenotypic mosai-
cism: a single large branch in this individual is resistant to
defoliation by Christmas beetles (Anoplognathus spp Coleop-
tera: Scarabaeidae) due to stable differences in leaf chemistry
and gene expression [19,20]. We find that the rate of somatic
mutation per generation is relatively high, but the rate per
metre of growth is surprisingly low in comparison to other
species. We suggest potential proximate and ultimate reasons
for the wide variation in somatic mutation rates across plants.
2. Material and methods
(a) Field sampling
We used a known mosaic E. melliodora (yellow box). This tree
is found near Yeoval, NSW, Australia (−32.75°, 148.65°). We
collected the ends of eight branches in the canopy (figure 1).
Branches were collected using an elevated platform mounted
on a truck and were placed into labelled and sealed polyethylene
bags which were immediately buried in dry ice in the field.
Within the 24 h of collection, the samples were transferred to
−80°C until DNA extraction. Simultaneously, we used a thin
rope to trace each branch from the tip to the main stem. These
rope lengths were measured to determine the lengths of the
physical branches of the tree.

(b) DNA extraction, library preparation, and sequencing
The branches were maintained below −80°C on dry ice and in
liquid nitrogen while sub-sampled in the laboratory. From each
branch, we selected a branch tip which had at least three con-
secutive leaves still attached to the stem. From this branch tip,
we independently sub-sampled roughly 100 mg of leaf from
the ‘tip-side’ of the mid-vein on three consecutive leaves using
a single hole punch into a labelled microcentrifuge tube contain-
ing two 3.5 mm tungsten carbide beads. The sealed tube was
submerged in liquid nitrogen before the leaf material was
ground in a Qiagen TissueLyser (Qiagen, Venlo, Netherlands)
at 30 Hz in 30 s intervals before being submerged in liquid nitro-
gen again. This was repeated until the leaf tissue was a consistent
powder, up to a total of 3.5 min grinding time.

DNA was extracted from this leaf powder using the Qiagen
DNeasy Plant Mini Kit (Qiagen, Venlo, The Netherlands),
following the manufacturer’s instructions. DNA was eluted in
100 µl of elution buffer. DNA quality was assessed by gel electro-
phoresis (1% agarose in 1 ×TAE containing ethidium bromide),
and quantity was determined by Qubit Fluorometry (Invitrogen,
California, USA) following manufacturer’s instructions.

We used a Bioruptor (Diagnode, Seraing (Ougrée), Belgium)
to fragment 1 μg of DNA to an average size of 300 bp (35 s on
‘High’, 30 s off for 35 cycles at 4°C). The fragmented DNA was
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Figure 2. Phylogenetic trees reconstructed from somatic mutations resemble the physical structure of the tree more closely than expected by chance. (a) The PD
between the physical tree (figure 1) and all 10 395 possible phylogenetic trees of eight taxa is shown as a histogram. A tree with the same topology as the physical
tree will have a PD of 0. The solid red line represents the boundary of the smallest 5% of the distribution of PDs, such that a tree with a PD lower than this line is
more similar to the physical tree than expected by chance. All of the maximum-parsimony trees (dashed red lines) and the one maximum-likelihood tree (solid blue
line) are more similar to the physical tree than expected by chance. (b) A side-by-side comparison of the physical tree (left, branch lengths in metres) and the
maximum-likelihood tree (right, branch lengths in substitutions per site) inferred with the JC model. Letters on the nodes of the physical tree (left) correspond to
the same letters of internal nodes in figure 1. Numbers on the maximum-likelihood tree (right) are bootstrap percentages. There is a single difference between the
two trees: the inferred tree groups samples M8 and M5 together with low bootstrap support (44%), which is a grouping that does not occur in the physical tree.
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purified using 1.6 × SeraMag Magnetic Beads (GE LifeSciences,
Illinois, USA) following the manufacturer’s instructions. We
used Illumina TruSeq DNA Sample Preparation kit (Illumina
Inc., California, USA) following the manufacturer’s instructions
to generate paired-end libraries for sequencing. These libraries
were sequenced on an Illumina HiSeq 2500 (Illumina Inc.,
California, USA) at the Biomolecular Resource Facility at the
Australian National University, Canberra.

(c) Creation of pseudo-reference genome
Since there is no available reference genome for E. melliodora, we
created a pseudo-reference genome by iterative mapping and
consensus calling. To do this, we first mapped all of our reads
to version 2.1 of the E. grandis reference genome [21] using
NGM [22] and then updated the E. grandis reference genome
using bcftools consensus [23]. We iteratively repeated this
procedure until we saw only marginal improvement in the
number of unmapped reads and reads that mapped with a map-
ping quality of zero. The alignment originally contained 67 M
unmapped reads and 311 M reads that mapped with zero map-
ping quality, out of a total of 1792 M reads. After the first
iteration, the alignment contained 61 M unmapped reads and
349 M reads that mapped with zero mapping quality. After the
last iteration, the alignment contained 59 M unmapped reads
and 311 M reads that mapped with zero mapping quality. The
consensus of this alignment served as the reference for all further
downstream analyses.

(d) Variant calling for positive control
To call variants for the positive control, we mapped each repli-
cate of each branch tip (24 samples in total) to the final
pseudo-reference genome using NGM and called genotypes
using GATK 4 according to the GATK best practices workflow
[24]. This resulted in a full genome alignment of all 24 samples
(three replicates of eight branches) and produced an initial set
of 9 679 544 potential variable sites, a number which includes
all heterozygous sites in the genome.

We then filtered variants to minimize the false-positive rate by
retaining only those sites in which: (i) genotype calls were identical
within all three replicates of each branch tip (see also electronic
supplementary material, §1); (ii) at least one branch tip had a differ-
ent genotype than the other branch tips; (iii) the site is biallelic,
since multiple somatic mutations are likely to be extremely rare;
(iv) the total depth across all samples is less than or equal to 500
(i.e. roughly twice the expected depth of 240×), since excessive
depth is a signal of alignment issues; (v) the ExcessHet annotation
was less than or equal to 40, since excessive heterozygosity at a site
is a sign of genotyping errors, particularly in a site that is actually
uniformly heterozygous throughout the tree but at which genotyp-
ing errors have caused a mutation to be called; and (vi) the site is
not in a repetitive region determined by a lift-over of the E. grandis
RepeatMasker annotation, as variation in repeat regions is often
due to alignment error. This filtering produced a set of 99
high-confidence sites containing putative somatic mutations. The
number of mutations that remained after the application of each
filter is described in §5 of the electronic supplementary material.

(e) Positive control
Using the set of 99 high-confidence putative somatic mutations,
we use the Phangorn package in R [25] to calculate the parsi-
mony score of all 10 395 possible phylogenetic trees of eight
taxa. This estimates the number of somatic mutations that
would be required to explain each of the 10 395 phylogenetic
trees, using the Fitch algorithm implemented in the Phangorn
package. Of these trees, three had the maximum-parsimony
score of 78. One of these three trees matched the topology of
the physical tree (figure 2).

Next, we calculated the path difference (PD) between all
10 395 trees and the physical tree topology. The PD measures
differences between two phylogenetic tree topologies [26] by
comparing the differences between the path lengths of all pairs
of taxa. Here we use the variant of the PD that treats all
branch lengths as equal, because we are interested only in topo-
logical differences between trees, not branch length differences.
Comparing all 10 395 trees to the physical tree topology provides
a null distribution of PDs between all trees and the physical tree
topology, which we can use to ask whether each of the three
maximum-parsimony trees is more similar to the physical tree
topology than would be expected by chance. To do this, we
simply ask whether the PD of each of the three observed
maximum-parsimony trees falls within the lower 5% of the
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distribution of PDs from all 10 395 trees. This was the case for all
three maximum-parsimony trees ( p<0.001 in all cases; figure 2),
suggesting that our data contain biological signal which render
the phylogenetic trees reconstructed from somatic mutations
more similar than would be expected by chance to the
physical tree.

( f ) Variant calling for estimating the rate and spectrum
of somatic mutations

Using the physical tree topology to define the relationship
between samples, we called somatic mutations using DeNovo-
Gear’s dng-call method [27] compiled from https://github.com/
denovogear/denovogear/tree/3ae70ba. Model parameters
were estimated from3-fold degenerate sites in ourNGMalignment,
via VCFs generated by bcftools mpileup and bcftools call with–
pval-threshold=0. We estimated maximum-likelihood parameters
using the Nelder–Mead numerical optimization algorithm
implemented in the R package dfoptim (https://cran.r-project.
org/package=dfoptim). We then called genotypes using the
GATK best practices workflow as above, but with the standard-
min-confidence-threshold-for-calling argument set to 0, causing
the output VCF to contain every potentially variable site in the
alignment. Thus, we used GATK to generate high-quality pileups
from our alignments. These pileups were then analysed by
dng-call to identify (i) heterozygous sites and (ii) de novo somatic
mutations. Since successful haplotype construction in a region
indicates a high-quality alignment, we used Whatshap 0.16 [28]
to generate haplotype blocks from the heterozygous sites.

Next, we filtered our de novo variant set to remove potential
false positives. We removed variants that (i) were on a haplotype
block with a size less than 500 nucleotides (among other things,
this filter will remove many putative variants that fall in long
repeat regions); (ii) were within 1000 nucleotides of another de
novo variant (indicative of alignment issues such as might
occur in repeats and other regions); (iii) had an log likelihood
of the data (LLD) score less than −5 (indicative of poor model
fit); and (iv) had a de novo mutation probability (DNP) score
less than 0.99999 (retaining only the highest confidence variants).
This produced a final variant set of 90 variants.

(g) Estimation of the false-negative rate
To estimate the number of mutations that we were likely to have
filtered out in our variant calling pipeline, we used the method
of Ness et al. [29], adapted to the current phylogenetic framework.
Specifically, we randomly selected 14000 sites from the first 11 scaf-
folds of the pseudo-reference genome and randomly assigned 1000
of these sites to each of the 14 branches on the tree. For each of
these sites, we induced in silico mutations into the raw reads
with a three-step procedure. We first estimated the observed geno-
type at the root using DeNovoGear call at each site. We then chose
a mutant genotype by mutating one of the alleles to a randomly
chosen different base using a transition/transversion ratio of 2,
reflecting the observed transition/transversion ratio of eucalypts.
We edited the raw reads as follows: for each mutation, we defined
the samples to be mutated as all of those samples that descend
from the branch on which the in silico mutation occurred. For
example, an in silicomutation occurring on branch B→C in figure 1
would affect all three replicates of samples 1, 2 and 3. We then
edited the reads that align to the site in question to reflect the
new mutation, depending on whether the reference genotype
was homozygous or heterozygous. For homozygous sites, we
selected the number of reads to mutate by generating a binomially
distributed random number with a probability of 0.5 and a
number of observations equal to the number of reads with the
reference genotype. We then randomly selected that the number
of reads with the reference allele to mutate to the mutant allele
and edited the raw reads accordingly. For a heterozygous site,
we edited the reads to replace all occurrences of the reference
allele to mutant allele. The result of this procedure is the generation
of a new set of raw fastq files, which now contain information on
1000 in silico mutations for every branch in the physical tree.

To determine the false-negative rate of the variant calling pipe-
line, we re-ran the entire pipeline using the edited reads and
recorded how many of the 14000 in silico mutations were recov-
ered by the pipeline. This number was 4193, suggesting that our
false-negative rate is 70.05%. In other words, we expect that our
empirical analysis recovered roughly three in 10 true mutations,
because our power is limited in part by attempts to filter out
false positives, which also removes a number of true positives.

(h) Estimation of the false-discovery rate
To determine the false-discovery rate of the variant calling pipe-
line, we simulated random trees of our samples (where each of
the eight branches is represented by three tips that denote the
three replicates of that branch) by shuffling the tip labels until
the tree had a maximal Robinson–Foulds distance from the orig-
inal tree. This 24-taxon tree shares no splits with the original
24-taxon tree, so any phylogenetic information should be
removed. We simulated 100 such trees and called variants using
the pipeline above, but assuming that these treeswere the physical
tree, and ignoring any sites we had previously called as variable.
Thus, any variants called by the pipeline must be false positives.
We recovered 11 false positive calls over 100 simulations (i.e. 0.11
false-positive mutations per simulation), indicating our false-
discovery rate is approximately 0.12%. We calculated the false-
discovery rate only once, after the details of the pipeline were
finalized, to avoid overfitting our pipeline to artefactually
reduce the false-discovery rate.
3. Results and discussion
(a) Field sampling and sequencing
We selected eight branch tips that maximized the intervening
physical branch length on the tree (figure 1), reasoning that
this would increase our power by maximizing the number of
sampled cell divisions and thus somatic mutations. We per-
formed independent DNA extractions from three leaves from
each branch tip, prepared three independent libraries for Illu-
mina sequencing and sequenced each library to 10× coverage
(assuming a roughly 500 Mbp genome size, as is commonly
observed in Eucalyptus species [30]) using 100 bp paired-end
sequencing on an Illumina HiSeq 2500. Quality control of
the sequence data verified that each sample was sequenced
to approximately 10× coverage and that each branch tip was
therefore sequenced to approximately 30× coverage.

(b) Positive control analysis
We first performed a positive control to confirm that the phy-
logeny of a set of high-confidence somatic variants matches
the physical structure of the tree. This approach relies on
being able to infer the ontogeny of the tree with sufficient
accuracy that a valid comparison can be made between the
ontogeny of the tree and a phylogeny generated from that
tree’s somatic variants. Documenting a plant’s ontogeny
with sufficient accuracy may not be possible for all plant
species or individuals. Nevertheless, the physical structure
of the tree we studied was clear (figure 1), and although Euca-
lyptus trees are known to frequently lose branches, branch
loss and regrowth should not affect the correlation between
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ontogeny and phylogeny provided that sufficient mutations
accumulate during cell replication. To perform the phyloge-
netic positive control, we created a pseudo-
reference genome using our data to update the genome of
E. grandis (see methods). We then called variants using
GATK [31] in all three replicates of all eight branch tips and
used a set of strict filters (see methods and supplementary
information) designed to avoid false-positive mutations in
order to arrive at an alignment of 99 high-confidence somatic
variants. To find the phylogenetic trees that best explain this
alignment, we calculated the alignment’s parsimony score on
all 10 395 possible phylogenetic trees of eight samples. Parsi-
mony is an appropriate method here because we do not
expect more than one mutation to occur at any single site
on any single branch of the E. melliodora tree. We then
asked whether the three phylogenetic trees with the most
parsimonious scores were more similar to the physical struc-
ture of the tree than would be expected by chance. To do this,
we calculated the PD between the structure of the physical
tree and each of the three most parsimonious trees. We then
compared these differences to the null distribution of PDs
generated by comparing the structure of the physical tree to
all possible 10 395 trees of eight samples (figure 2a). All
three maximum-parsimony trees were significantly more
similar to the physical tree than would be expected by
chance ( p<0.001 in all cases; figure 2a, dashed red lines). Fur-
thermore, one of the most parsimonious trees is identical to
the structure of the physical tree, and a maximum-likelihood
tree calculated from the same data shows just one topological
difference compared to the structure of the physical tree, in
which sample 8 is incorrectly placed as sister to sample 5,
but with low bootstrap support of 44% (figure 2a, blue line;
figure 2b). As would be expected if plants accumulate somatic
mutations as they grow, there is a significant correlation
between the branch lengths of the physical tree measured
in metres and the branch lengths of the maximum-parsimony
tree of the same topology measured in number of somatic
mutations (linear model forced through the origin: R2 =
0.82, p< 0.001; see also electronic supplementary material,
§4). Notably, while various factors such as the difficulty of
correctly inferring plant ontogeny may limit the utility of a
phylogenetic positive control such as we present here (i.e.
may produce false-negative results in which the structure of
the tree appears, erroneously, to differ from the phylogeny
of the sequenced genomes), it is unlikely that these factors
would erroneously cause a close match between the physical
structure of the tree and a phylogeny generated from the gen-
omes of eight branches of that tree (i.e. a false positive). We
therefore conclude that these analyses demonstrate that the
phylogeny recovered from the genomic data matches the
physical structure of the tree and confirm that there is a
strong biological signal in our data.
(c) Estimation of the somatic mutation rate
We next developed a full maximum-likelihood framework that
extends the existing models in DeNovoGear [27] to detect
somatic mutations in a phylogenetic context and used this fra-
mework to estimate the full rate and spectrum of somatic
mutations in the individual E. melliodora (see Material and
methods). This method improves on the approach we used
in our positive control, above, because it increases our power
to detect true somatic mutations and avoid false positives by
assuming that the phylogenetic structure of the samples fol-
lows the physical structure of the tree, an assumption that is
validated by the analyses above. It also makes better use of
the replicate sampling design than the method we use for
our positive control, above, by directly modelling the expected
variation in sequencing data across our three biological repli-
cates under the expectation that all three replicates were
sequenced from a single underlying genotype (see methods
and electronic supplementary material). Using this frame-
work, we identified 90 high-confidence somatic variants.

Of the 90 high-confidence variants we identified, 20 were
in genes. Of these, six were in coding regions, with five non-
synonymous mutations and one synonymous mutation. The
small sample size of synonymous and non-synonymous
mutations means that we cannot provide a meaningful esti-
mate of the ratio of non-synonymous to synonymous
somatic mutations, although such an estimate would help
to understand the extent to which somatic mutations may
be under selection. We detected seven mutations on the
branch that separates the herbivore-resistant samples from
the other samples (branch B→C, figure 1). Although we
lack the functional evidence to determine whether any of
these mutations are directly involved in the resistance pheno-
type, two of the mutations occur near genes that are plausible
candidates for further investigation. One mutation occurs
near Eucgr.C00081, which is a zinc-binding CCHC-type
protein belonging to a small protein family known to bind
RNA or ssDNA in Arabidopsis thaliana and thus potentially
involved in gene expression regulation. Another mutation
occurs near Eucgr.I01302, an acid phosphatase that may
have as a substrate phosphoenol pyruvate, and therefore
may be involved in pathways associated with the production
of various secondary metabolites, including those identified
in a recent GWAS study in a closely related eucalypt [32].

We used the replicate sampling design of our analysis to
estimate the false-negative rate and the false-discovery rate of
our approach. It is necessary to estimate both the number of
false-negative mutations and the number of false-positive
mutations in order to estimate a somatic mutation rate. The
former allows one to correct for the number of somatic
mutations which a pipeline has failed to detect, while the
latter allows one to correct for the number of somatic
mutations which a pipeline has erroneously inferred. We esti-
mated the false-negative rate by creating 14 000 in silico
somatic mutations in the raw reads [33], comprising 1000
in silico mutations for each of the 14 branches of the physical
tree, and measuring the recovery rate of these in silico
mutations using our maximum-likelihood approach. We
were able to recover 4193 of the in silicomutations, suggesting
that our recovery rate is 29.95%, and thus our false-negative
rate is 70.05%. This false-negative rate was similar across all
of the 14 branches in the tree (see electronic supplementary
material, §2). Our ability to recover mutations differs substan-
tially between repeat regions and non-repeat regions: we
recover 40% of the simulated mutations in non-repeat
regions, but just 13% of the simulated mutations in repeat
regions (which make up roughly 40% of the genome). This
difference is explained primarily by the stringent filters we
use, that lead us to screen out many putative somatic
mutations in repeat regions. We then estimated the number
of false-positive mutations in our data, and hence the false-
discovery rate (the percentage of the observed mutations
that are false positives) by repeating our detection pipeline



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192364

6
after permuting the labels of samples and replicates to
remove all phylogenetic information in the data, and only
considering sites that we had not previously identified as
variable (see methods). By removing phylogenetic infor-
mation and previously identified variable sites, we can be
sure that any mutations detected by this pipeline are false
positives. Across 100 such permutations, we detected 11
false-positive mutations in total, suggesting that our pipeline
generates 0.11 false-positive variant calls per experiment, and
that the false-discovery rate for our analysis is 0.12%.

Based on these analyses, we can estimate the mutation
rate per metre of physical growth and per year. We estimate
that the true number of somatic mutations in our samples is
300 (calculated as: (90 high-confidence mutations minus 0.11
false-positive mutations)/the recovery rate of 0.2995)). Since
we sampled a total of 90.1 m of physical branch length, this
equates to 3.3 somatic mutations per diploid genome per
metre of branch length, or 2.75 × 10−9 somatic mutations per
base per metre of physical branch length. Although the
exact age of this individual is unknown and difficult to
estimate––it lives in a temperate climate and does not pro-
duce growth rings––its age is nevertheless almost certainly
between 50 and 200 years old. Given that the physical
branch length connecting each sampled branch tip to the
ground varies between 8.4 m and 20.3 m, we estimate that
the mutation rate per base per year for a single apical meris-
tem lies in the range 1.16 × 10−10 to 1.12 × 10−9 (i.e. 8.4 × 2.75 ×
10−9/200 to 20.3 × 2.75 × 10−9/50). It is important to note that
it remains unclear whether mutations in growing plants
accumulate linearly with the amount of physical growth.
Indeed, evidence is accumulating that in at least some (and
perhaps most) species, mutations may accumulate primarily
at branching events rather than during elongation of individ-
ual branches [34,35]. If this is the case, then the correlation we
observe between the physical branch length and the number
of inferred somatic mutations (see above, and electronic sup-
plementary material, §4) may be due to a correlation between
the physical length of a branch and the number of branching
events that occurred along that branch during the plant’s
development. It is not possible to directly estimate the
number of branching events along each branch in the individ-
ual tree we used in this study, because we expect that the tree
will have regularly lost branches throughout its life, leaving
no accurate record of the number of branching events.

(d) What drives differences in somatic mutation rates
among species?

With some additional assumptions, it is also possible to esti-
mate the mutation rate per generation and to compare this
to estimates from other plants. The average height of an
adult E. melliodora individual is between 15 m and 30 m [36],
so if we assume that all somatic mutations are potentially heri-
table (about which there is limited evidence [1] and ongoing
discussion [37]), we can estimate the per-generation mutation
rate. To do this, we assume that a typical seed will be pro-
duced from a branch that has experienced 15–30 m of linear
growth from the seed [36], and that mutations will have accu-
mulated along that branch at 2.75 ×10−9 somatic mutations per
base per metre of physical branch length, estimated above. We
therefore estimate that the heritable somatic mutation rate per
generation is between 4.13×10−8 and 8.25× 10−8 mutations per
base. For comparison the roughly 20 cm tall Arabidopsis
thaliana has a per-generation mutation rate of 7.1 ×10−9

mutations per base [38]. To the extent that such a comparison
is accurate, which will be somewhat limited because the
former estimate considers only somatic mutations and the
latter considers all heritable mutations including those
caused during meiosis, we can then compare these estimates.
Comparing the estimates suggests that despite being roughly
100 times taller than Arabidopsis thaliana, the per-generation
mutation rate of E. melliodora is just approximately 10 times
higher, which is achieved by a roughly fifteen-fold reduction
in the mutation rate per physical metre of plant growth.

Our work adds to a growing body of evidence that low
somatic mutation rates per unit of growth are a general fea-
ture of many large plant species [1,2,15,16,18]. For example,
a recent study of the Sitka spruce estimated a per-generation
somatic mutation rate of 2.7 × 10−8, with confidence intervals
that overlap ours [15]. While this per-generation rate is very
similar to the one we estimate here, the rate of somatic
mutation per metre of growth is around an order of magni-
tude lower in the Sitka spruce than our estimate for
E. melliodora (2.75 × 10−9 somatic mutations per base pair
per metre of growth for E. melliodora estimated here, versus
3.5 × 10−10 somatic mutations per base pair per metre of
growth for Sitka spruce, estimated by dividing the per-
generation mutation rate of 2.7 × 10−8 mutations per base by
the average height of studied individuals of 76 m [15], an
appropriate calculation because the somatic mutation rate
was estimated from paired samples taken from the base
and the top of a collection of individual trees). Lower somatic
mutation rates per unit of growth in larger plants may be the
result of selection for reduced somatic mutation rates in
response to the accumulation of increased genetic load in
larger individuals [1,2,10,15,39–41]. This pattern could also
explain why larger plants tend to have lower average rates
of molecular evolution than their smaller relatives [10,42].

Several possible mechanisms might account for a
reduction in accumulation of mutations per unit of growth
in larger plants. Selection may favour reduction in the
mutation rate per cell division through enhanced DNA
repair to reduce the lifetime mutation risk. Alternatively, it
may be that the reduction in the mutation rate is due to
slower cell division. For example, plant meristems contain a
slowly dividing population of cells in the central zone of
the apical meristem, and these cells are known to divide
more slowly in trees than in smaller plants [43]. Indeed, the
rate of cell division in the central zone is so low that one esti-
mate put the total number of cell divisions per generation in
large trees as low as one hundred [43]. Regardless of the
underlying mechanism, the surprisingly low rates of somatic
mutation in large plants reported here and elsewhere suggest
an emerging picture in which there is a strong link between
the somatic mutation rates and life history across the plant
kingdom. Longevity and size are two aspects of plant life his-
tory likely to be of central importance to the evolution of
somatic mutation rates. Larger plants may suffer from a
higher accumulation of somatic mutations because of the
necessity for additional cell divisions. Plants that live longer
may suffer from a higher accumulation of somatic mutations
because of the accumulation of DNA damage over time
and/or increased cell turnover in long-lived tissues. The
relative importance of these two factors may differ among
clades, species, and individual tissues and is likely to also
depend on the balance between DNA damage and repair
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between cell divisions [44], the accuracy of DNA replication,
cell size, and the rate of cell division. We hope that the
approach we describe here will help in further understanding
how these and other factors contribute to the accumulation or
avoidance of somatic mutations in plants.

Data accessibility. All of the bioinformatic workflows we describe here are
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