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ABSTRACT

Molecular dating analyses allow evolutionary timescales to be estimated from genetic data, offering an unprecedented
capacity for investigating the evolutionary past of all species. These methods require us to make assumptions about the
relationship between genetic change and evolutionary time, often referred to as a ‘molecular clock’. Although initially
regarded with scepticism, molecular dating has now been adopted in many areas of biology. This broad uptake has been
due partly to the development of Bayesian methods that allow complex aspects of molecular evolution, such as variation
in rates of change across lineages, to be taken into account. But in order to do this, Bayesian dating methods rely on
a range of assumptions about the evolutionary process, which vary in their degree of biological realism and empirical
support. These assumptions can have substantial impacts on the estimates produced by molecular dating analyses. The
aim of this review is to open the ‘black box’ of Bayesian molecular dating and have a look at the machinery inside. We
explain the components of these dating methods, the important decisions that researchers must make in their analyses,
and the factors that need to be considered when interpreting results. We illustrate the effects that the choices of different
models and priors can have on the outcome of the analysis, and suggest ways to explore these impacts. We describe some
major research directions that may improve the reliability of Bayesian dating. The goal of our review is to help researchers

to make informed choices when using Bayesian phylogenetic methods to estimate evolutionary rates and timescales.
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I. INTRODUCTION

(1) A brief history of molecular time

The evolutionary history of life on Earth spans several
billion years, but much of this history remains unknown.
Fossilization 1s rare and for many lineages we have no direct
evidence of past organisms. Analysis of nucleotide and amino
acid sequences from the genomes of modern species provides
an exciting opportunity to peer into the evolutionary past
of a much wider range of organisms. Molecular evolution
is continuous and leads to the accumulation of genetic
differences between lineages over time. Therefore, the
amount of genetic divergence between species can be used to
estimate the age of their last common ancestor, provided that
we are willing to make assumptions about the relationship
between genetic divergence and time. Models that describe
this relationship are often referred to as ‘molecular clocks’.

The relationship between biochemical differences and
degree of evolutionary relatedness among species had been
observed since the early 1900s (see: Morgan, 1998). The
idea of a molecular clock emerged from early comparative
studies of molecular evolution in the 1960s that showed that
the proportion of amino acid differences between proteins
of different species was related to the time since their evo-
lutionary divergence (Zuckerkandl & Pauling, 1962, 1965;
Margoliash, 1963; Doolittle & Blombéck, 1964). Many biol-
ogists were 1nitially sceptical about the idea of a molecular
clock (Morgan, 1998), because they expected that the pace of
molecular evolution would be irregular, driven by occasional
bouts of adaptation to changing environmental conditions.
Nonetheless, it did not take long before molecular dates
were being used to overturn ideas about human evolution
(Sarich & Wilson, 1967), suggesting that humans had split
from other apes more recently than was then generally
believed (Wilson & Sarich, 1969). These early molecular
date estimates, which placed the chimpanzee—human split
around 5 million years ago, were initially shocking but are
now generally accepted (Bradley, 2008).
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The first molecular dating studies rested on the assump-
tion that a rate calculated for one lineage could be used
to estimate the dates of all other evolutionary divergence
events in the phylogeny (Zuckerkandl & Pauling, 1962). The
assumption of rate constancy was agnostic with respect to the
causes and patterns of molecular evolution. In particular, it
did not depend on assuming that most changes were neutral
(rather than driven by natural selection), nor on rates being
similar across all of the amino acid sites in a protein. Instead,
the rate of evolution was assumed to average out over long
time periods to leave a strikingly linear relationship between
the number of amino acid differences in proteins from
different species and their dates of divergence estimated from
fossil evidence (Dickerson, 1971). In this context, the term
‘molecular clock’ is perhaps best understood as a statement
about the ability to infer time from genetic sequence data,
not as a claim about a regular ‘tick rate’ of changes in the
genome.

In fact, the rate of molecular evolution not only fluctuates
over time and across the genome, but it also varies among
lineages. A wide range of species traits have been shown
to correlate with the rate of molecular evolution, including
body size, generation time, population size, behaviour,
niche and social structure (Bromham, 2009). There might
be additional broader-scale effects on lineage-specific rates
of molecular evolution, such as an impact of environment
or diversification rate (Venditti & Pagel, 2009; Gillman
& Wright, 2014; Bromham et al,, 2015). Lineage-specific
rates complicate the phylogenetic inference of divergence
times, because we cannot assume that the evolutionary rate
calculated for one lineage is an accurate representation of
rates along other lineages in the tree.

The central problem in molecular dating is that we need
to separate the branch lengths on a phylogeny (reflecting
the amount of genetic change) into their two components:
evolutionary rates and time durations. To do this, we need to
incorporate independent information to anchor one or the
other, for example using rate estimates from previous studies
or temporal information from the geological record. This is
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known as calibrating the molecular clock and it can have a
profound impact on the date estimates that are obtained.

Since the earliest molecular dating studies over half
a century ago, there has been continual modification
and improvement of methods for estimating evolutionary
timescales from molecular sequence data. The past two
decades have seen the development of various distance-based
and maximum-likelthood methods for estimating evolu-
tionary rates and timescales [for recent reviews, see Ho &
Duchéne, 2014 and Kumar & Hedges, 2016]. However, one
of the most important advances has been the development
of the Bayesian phylogenetic framework (Rannala & Yang,
1996; Mau & Newton, 1997; Li, Pearl & Doss, 2000). This
has made it possible to implement complex, parameter-rich
models of evolution, including models of rate variation across
lincages. As a result, Bayesian methods are now widely used
not only for molecular dating (Donoghue & Yang, 2016), but
also to infer demographic history (Drummond et al., 2005),
phylogeographic processes (Lemey et al., 2009), and viral
phylodynamics (Pybus & Rambaut, 2009). The capacity for
joint inference of various evolutionary and demographic
quantities, while taking into account the uncertainty in the
phylogeny and other model parameters, is one of the most
appealing strengths of the Bayesian approach.

While there is a tendency to place faith in the latest
or most complex methods, these are not always more
reliable than simpler ones (Sullivan & Joyce, 2005). The
more complex the method, the more assumptions we have
to make about the evolutionary process. Some of these
assumptions may provide a more realistic description of
the complexities of evolutionary patterns and processes. But
some of the assumptions in phylogenetics are made for
statistical tractability rather than being necessarily based on
understanding of the underlying evolutionary processes.

In Bayesian molecular dating, we have a set of fundamental
evolutionary assumptions that are applied almost universally.
For example, all molecular dating analyses are built upon the
assumption that the sequences are accurately aligned so that
only homologous sites are compared. In addition to the fun-
damental evolutionary assumptions, there are assumptions
that are built into the model, such as the form of the substitu-
tion model. These are typically fixed in any given analysis, but
we could change the assumptions and run the analysis again.
Finally, and specific to Bayesian analyses, we have a set of ‘pri-
ors’ that encapsulate our beliefs about the evolutionary his-
tory and processes: during the analysis, we update our beliefs
after considering evidence from the data. Collectively, all of
these assumptions can have complex impacts on Bayesian
estimates of evolutionary rates and timescales, though their
influence might not always be clearly discernible.

The aim of this review is to describe the process of Bayesian
molecular dating, including the range of models and priors
that are commonly used, and to consider how the choices
of methods and assumptions can affect date estimates.
Although there are many types of genetic data that can be
used profitably in molecular dating studies (Ho et al., 2016),
the focus of this review will be on DNA sequences, which

are the dominant form of data used in Bayesian molecular
dating.

(2) The Bayesian framework

The Bayesian framework is built on Bayes’s theorem, which
states that the posterior probability distribution is given by
the product of the prior distribution and the likelithood,
divided by the probability of the data. In phylogenetics, the
theorem takes the following form:

P(0\D) = P (©) P (D|0) /P (D)

where P(0| D) is the probability distribution of the parameters
given the data (posterior probability), P(6) is the probability
distribution of the parameters (prior probability), P(D| ) is
the probability of the data given the parameters (likelihood),
and P(D) is the probability of the data.

The likelihood score, P(D] 6), is evaluated using the like-
lihood model, which includes the tree and the substitution
model. It represents the probability that we would have
obtained the observed sequence data, if this particular his-
tory of the sequences were true (that is, given a particular tree
topology, branch lengths, and model of the substitution pro-
cess). The priors represent our beliefs about the parameters
in the likelithood model, without considering any informa-
tion from the data. In some cases, prior distributions can be
generated using models of the evolutionary process. These
models can have parameters called hyperparameters, and
their prior distributions are referred to as hyperpriors. The
likelihood model and the priors are collectively referred to as
the ‘hierarchical model’, because they involve multiple layers
of models, including the components of the likelihood model,
the priors on the parameters of the likelihood model, and the
hyperpriors on the hyperparameters of the priors (Fig. 1).

The probabilities of the different sets of parameter values
are then updated in light of what we learn from the data
(the likelihood score), which might provide more support for
some values than others. This process yields the posterior
probability distributions of all of the parameters in the
model. If the posterior differs from the prior, we can
conclude that the DNA sequences contained information
that changed our mind about the most likely explanations
for the history of those sequences. If the prior and posterior
probability distributions are very similar, then it is likely that
the evidence from the data was weak, our prior beliefs were
too strong, or a combination of both.

A key problem in Bayesian phylogenetics lies in the
calculation of the posterior distribution. The denominator
in Bayes’s theorem, the probability of the data, cannot be
obtained analytically except in trivial cases. Instead, we
circumvent the need to calculate this quantity by dealing
only with ratios of posterior probabilities, which allow
the problematic denominator to be cancelled out. This is
an important feature of the Markov chain Monte Carlo
(MCMC) method, which involves estimating the posterior
distributions of the model parameters by drawing a large
number of samples from these distributions in an MCMC
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Fig. 1. Components of a typical Bayesian dating analysis, including the data, likelihood model, prior, and posterior. The data set
is an alignment of five nucleotide sequences. The likelithood model consists of the substitution model [general time-reversible model
with a proportion of invariable sites and gamma-distributed rates across sites (GTR 4 I 4 I')] and the tree model (topology and
branch lengths). The substitution model includes parameters for the rates of transitions between bases (r;), base frequencies (1;),
the shape parameter for the gamma distribution of rates across sites (), and the proportion of invariable sites [p(inv)]. In the tree
model, the branch lengths are the product of the branch durations and branch rates. Prior distributions are specified for all of the
parameters in the likelihood model, including the tree topology. A birth—death model is used to generate the tree prior, which
provides the joint prior distribution of topology and branch durations. The birth—death model has parameters representing the
speciation rate (A), extinction rate (i), and sampling probability (p). The speciation and extinction rates have their own priors,
known as hyperpriors. The prior distribution of branch durations is also influenced by calibration densities for node times, which in
this example are formulated as exponential distributions. This example uses an uncorrelated lognormal relaxed clock for the prior
distribution of branch rates. The posterior distribution of parameters, including the tree, is the combination of the prior and the

data (likelihood).

simulation (Yang & Rannala, 1997; Li etal, 2000). This
is the most common method for obtaining the posterior
distribution in Bayesian phylogenetics.

The most widely used method for MCMC simulation
in Bayesian phylogenetics is the Metropolis—Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970). This
algorithm starts with a tree and a set of values for the model
parameters, evaluates the likelihood that the tree could have
produced the observed data, given the evolutionary model,
and weights the likelihood by the prior probabilities (Fig. 2).
Then it proposes a change to one or more of the model
parameters and calculates the likelihood of this new set
of parameter values, weighted by the prior probabilities.
The MCMC compares these two alternative histories of the
sequence data, differing in at least one aspect of the model,
each with a likelihood score and prior probability. By taking
the ratio of posterior probabilities of these two alternative
histories, the term describing the probability of the data
neatly cancels out. This ratio is used to decide whether the
MCMC stays on the first state or moves to the new state.
However, unlike a likelihood hill-climbing procedure, the
decision to move or stay on the current state is guided by the
posterior probabilities, but also has a chance element that
means that it might move even if the proposed state has a
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slightly lower posterior probability (see Iig. 2). This stochastic
element comes from using a random number drawn from
a uniform distribution between 0 and 1. If the ratio of the
posterior probability of the proposed state to the posterior
probability of the current state is higher than the random
number, the proposal is accepted. But if the ratio of posterior
probabilities is lower than the random number, then the
proposal is rejected and the chain stays on the current state.
We can picture the MCMC chain as moving through
parameter space, representing the set of all possible phylo-
genetic solutions. Each point in this parameter space differs
from its neighbours in some aspect of the topology, or a
branch length, or a parameter value. We expect the MCMC
to visit each tree with a frequency equal to its posterior prob-
ability. During the MCMC procedure, we keep a record of
the trees and parameter values that have been visited (Fig. 2).
These samples provide a means of estimating the posterior
probability distribution of each parameter in our model.
Bayesian molecular dating is a complex process that
involves a range of assumptions and the specification of prior
beliefs about model parameters. In many cases changing
the models and priors will influence the outcome of the
analysis, but the impacts of these choices are often not directly
mvestigated. If different analyses produce conflicting results,
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Fig. 2. Flowchart describing a simplified process of Markov chain Monte Carlo (MCMC) for Bayesian molecular dating. An initial
state, consisting of a tree topology, branch lengths, and parameter values (represented by 6), is either chosen randomly or specified
by the user. A new state is proposed by making incremental changes to the branch lengths, model parameters, and tree topology.
Depending on the program, each step can propose a single or multiple changes. The initial and proposed states are evaluated for
their unnormalized posterior probability and a ratio calculated. If the random number drawn from a uniform distribution between
0 and 1 is greater than the ratio of the two posterior probabilities, then the proposal is rejected and the chain stays on the current
state, but if the random number is smaller than the ratio of the two posterior probabilities, the proposal is accepted and it becomes
the current state. The process continues until it reaches an arbitrary stopping point or when the user decides that a sufficient number

of samples has been drawn.

we generally do not know which set of date estimates is correct
unless we have additional, uncontroversial information about
the evolutionary timescale. But, by the very nature of the
problem, there are relatively few data sets for which we
can compare our date estimates against a known timescale.
This is partly because molecular dating analyses are used
to infer unknown divergence times, so are rarely applied to
cases where the answer is already known. More importantly,
however, Bayesian molecular dating typically incorporates
all prior information about divergence times, so the resulting
date estimates cannot be independently used to evaluate the
estimates.

There are surprisingly few cases in which a subset
of calibrating information is used to estimate the dates
of other nodes for which the age is already known.
One example is a Bayesian analysis of DNA from bison
(Bison priscus), which correctly identified the ages of most
of the ancient DNA sequences from samples that had
already been radiocarbon-dated (Shapiro etal, 2011).
Bayesian date estimates can be evaluated in light of
other evidence for an evolutionary timescale. For example,
molecular date estimates for the origin of planktonic algae
(Sanchez-Baracaldo et al., 2017) have been considered to be
consistent with biogeochemical evidence (Knoll, 2017).

In the absence of independent information on the
evolutionary timescale with which to evaluate the veracity
of Bayesian date estimates, simulation studies can be used
to explore the performance of the methods under different
evolutionary processes and patterns. Studies of synthetic data
generated by simulation under known conditions can tell us
how reliable methods are in specific (and often simplified)
scenarios, but we can never be certain that those conditions

are an appropriate reflection of reality. If we lack the means
to give a definitive answer on which methods are always
reliable, how are we to decide which are the best choices
for methods and models for a given data set? This choice
will depend partly on the characteristics of the genetic data,
including the nature of the markers being analysed and the
sampling scheme.

II. DATA

(1) Data selection

Molecular dating analyses are based on comparing
homologous sequences in order to reveal the history of
populations or lineages. These are usually sequences of a
number of loci, representing a miniscule fraction of the
whole genome. The hope is that the chosen loci will be
adequate to infer the history of the lineages from which they
were sampled. Since different loci can evolve at different
rates and have different evolutionary histories, the model of
molecular evolution employed in a dating analysis will need
to be appropriate to the data being analysed.

In a molecular dating study, DNA sequences in the
alignment can represent conspecific individuals, populations,
species, or higher taxa. Few data sets contain sequences
representing all the descendants of the last common ancestor
at the root of the tree. Instead, most molecular dating studies
rely on an incomplete sample of the tips (terminal nodes)
of the phylogeny. Increasing the density of taxon sampling
to include more tips in the phylogeny will often improve
inferences of topology (Heath, Hedtke & Hillis, 2008; Soares
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& Schrago, 2012) and will also increase the accuracy of
branch-length estimates, by reducing the node-density effect
(Hugall & Lee, 2007). The node-density effect occurs when
branch lengths are underestimated due to failure to account
fully for multiple substitutions at the same site. Studies have
shown that as taxon sampling increases, mean age estimates
approach the values inferred from the full data set and
the variance of the estimates decreases (Linder, Hardy &
Rutschmann, 2005; Schulte, 2013). The impact of taxon
sampling is likely to be important when there is a large
degree of rate variation across branches (Soares & Schrago,
2015).

Taxon sampling is an important consideration in all
molecular dating analyses, because of the potential impact on
the accuracy and precision of estimates of both topology and
branch lengths. In most Bayesian analyses, taxon sampling
is assumed to be random with respect to phylogenetic
relationships. This assumption is violated for many data
sets, particularly those in which sampling has been designed
to include representatives of all higher taxa, regardless
of differences in their species richness. This results in
non-random sampling, because tips within species-poor taxa
have a proportionally greater chance of being included in the
phylogeny than tips within diverse taxa. For example, in a
recent bird phylogeny that included representatives of every
order (Prum et al., 2015), the order Opisthocomiformes had
100% of tips sampled (because the sole species, hoatzin, was
included) while the species-rich Passeriformes had fewer than
1% of its tips sampled (because 44 species out of over 5000
were included). Although such sampling biases might seem
trivial, they can sometimes lead to inaccurate date estimates
(Welch, Fontanillas & Bromham, 2005; Beaulieu ez al., 2015;
Ronquist, Lartillot & Phillips, 2016). Modifications to the
tree prior are available for data sets in which taxa have been
sampled in closely related clusters, or dispersed across clades
so as to represent as much diversity as possible (Hohna et al.,
2011; Ronquist ez al., 2016).

As DNA sequences become easier to obtain in large
amounts, it is becoming less common to estimate molecular
dates using single-locus data sets. Combining multiple loci
in a single analysis brings many advantages, including
increased data and more representative sampling of the
genome, but it also brings challenges. In most multi-locus
studies, the loci are concatenated (joined end-to-end) and
analysed together. The concatenation approach makes the
implicit assumption that all loci share the same history and
so can be described with a single tree, although loci are
usually allowed to have different substitution models (Yang
& Rannala, 1997; Pupko et al., 2002) and can be permitted to
evolve at different rates (Ho & Duchéne, 2014; Yang, 2014).
However, many evolutionary processes can cause loci to have
different phylogenetic histories, including recombination,
gene duplication, and horizontal gene transfer (Maddison,
1997; Degnan & Rosenberg, 2009).

Phylogenetic analyses can potentially be misleading if loci
with incongruent evolutionary histories are assumed to share
a single tree (Posada & Crandall, 2002; Mossel & Vigoda,
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2005; Kubatko & Degnan, 2007). It is possible to test for
congruence between gene trees, and analyse only those loci
that seem to share the same evolutionary history (Leigh
et al., 2008). In this case, however, the analysis 1s focusing
on the history of one set of loci in the genome, which might
not adequately represent the evolutionary relationships of
the lineages being studied. An alternative approach is to
analyse the loci separately to infer their gene trees, and then
to combine these to infer a single phylogenetic history, or
species tree (Szollési et al., 2015). The gene trees and the
species tree can be jointly estimated in a Bayesian framework
(Rannala & Yang, 2008; Heled & Drummond, 2010), but this
is only computationally feasible for data sets with relatively
small numbers of loci and species.

Molecular data can be combined with other forms of
data in a ‘total-evidence’ approach to dating (Ronquist
etal., 2012; O’Reilly, dos Reis & Donoghue, 2015). For
example, morphological features can be coded as multistate
characters or as continuous traits. However, the inclusion of
morphological characters to inform branch-length estimates
in a dating analysis presents some challenges. For example,
while molecular analyses will typically include all of the sites
in the included sequences, the selection of morphological
characters is often biased towards traits that are diagnostic
in taxonomy. This means that morphological data sets will
tend to favour traits that are shared by multiple lineages,
with relatively less sampling of autapomorphies (character
states found in only a single taxon) and invariant characters
(found in all lineages); this will have potential impacts on the
dating analysis (Gavryushkina et al., 2017).

(2) Sequence alignment

The process of Bayesian molecular dating typically begins
with an alignment of nucleotide sequences arranged so that
each column of the alignment represents a site that has
been copied from the same site in the ancestral sequence.
For sequences that are correctly aligned, differences between
them are due to nucleotide replacements, insertions, or
deletions that have occurred during the history of descent
of these lineages from their common ancestor. If any
columns in the alignment do not represent homologous sites,
then any evolutionary inference drawn from those sites is
misguided. Misalignment can lead to inaccurate estimates of
evolutionary divergence and therefore influence the inferred
molecular dates.

Sequence alignment is often given relatively little
consideration in phylogenetic studies, and 1s typically treated
as a component of data preparation rather than a part
of phylogenetic inference itself (Loytynoja & Goldman,
2009; Morrison, 2009). While the sequences themselves are
observations about the world (barring errors in sequencing,
assembly, or annotation), the alignment is a hypothesis about
homology rather than an error-free observation (Wong,
Suchard & Huelsenbeck, 2008). Irrespective of whether the
sequences were aligned algorithmically or manually, or by a
combination of the two (automated alignment with manual
adjustment), we can rarely assign homology across sites with
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certainty. Alternative alignments of the same sequences can
lead to different estimates of the phylogeny, substitution
rates, and branch lengths (e.g. Fontanillas et al., 2007; Wong
et al., 2008; Liu, Linder & Warnow, 2011).

There are several possible approaches to incorporating
alignment error into a molecular dating study. One is to
iterate the phylogenetic analysis over many possible sequence
alignments and to assess the sensitivity of the results to
variations in the alignment (Wong e/ al., 2008). Alternatively,
alignments can be weighted with measures of confidence,
either using metrics to assign prior probabilities to different
alignment solutions or weighting individual sites in an
alignment (Penn et al.,, 2010; Wu, Chatterji & Eisen, 2012).
Another approach is to move away from the classic two-step
process of first optimizing the alignment then inferring the
phylogeny, and instead move towards joint estimation of the
tree and the sequence alignment (Lunter ez al., 2005).

III. COMPONENTS OF THE LIKELIHOOD
MODEL

The probability of the data given a particular model is known
as the likelihood. We can calculate the likelihood score using
the likelihood model, comprising the tree model and the
substitution model. The tree model includes the hierarchical
relationships among nodes, known as the tree topology, as
well as the lengths of the branches connecting the nodes.
Nodes in the tree can represent sampled taxa (terminal
nodes or tips) or their hypothetical ancestors (internal nodes),
including the common ancestor of all of the sampled taxa
(root node). Typically, the terminal nodes are fixed at the
same time point (the present) but the positions of the internal
nodes are estimated in the analysis. However, when DNA
sequences from ancient samples are included, the depths of
the terminal nodes can be either fixed at the age of the sample
or treated as estimable parameters (Shapiro et al.,, 2011). In
combined total-evidence analyses of extant and fossil taxa,
the terminal nodes can be millions of years old (Ronquist
et al., 2012; Gavryushkina et al., 2014).

The substitution model allows us to estimate the amount
of genetic change that has occurred since the observed
sequences were copied from their last common ancestor.
The simplest way to estimate genetic distance is to count the
observed differences between the aligned DNA sequences.
However, this ‘Hamming distance’ (or p-distance) will often
underestimate the number of nucleotide substitutions that
have actually occurred because there is a chance that some of
them have occurred on top of previous substitutions, erasing
evidence of past changes (Jukes & Cantor, 1969). We cannot
directly observe overwritten substitutions, but we can use a
model of the substitution process to infer how many of these
‘multiple hits’ might have occurred (Fig. 3). The substitution
model uses statements about the probabilities of different
kinds of substitution events to infer how many substitutions
are likely to have occurred in the past, given the patterns of
sequence variation that we observe in our alignment.

As with other parts of the Bayesian hierarchical model,
the substitution model incorporates a range of assumptions
about the molecular evolutionary process. The most
commonly used substitution models are members of the
general time-reversible (GTR) family (Jukes & Cantor, 1969;
Hasegawa, Kishino & Yano, 1985; Tavaré, 1986), which
share a number of assumptions about the data and their
evolutionary history. Some of these assumptions determine
the form of the model and are fixed components of the
analysis, whereas other assumptions are encapsulated in
the priors. A common example of a fixed assumption is
that nucleotide substitutions are independent and identically
distributed (i.1.d.). This means that every substitution in the
alignment 1s considered to occur independently of all others,
so a substitution at one site does not make a substitution at
any other site more or less likely to happen. Actually, we
have good biological reasons to suspect that substitutions at
one site can affect the chance of accumulating substitutions
at another site. For example, a copy of a gene with changes in
one part of the sequence might be more likely to persist down
the generations if it also has a compensating mutation that
restores the reading frame downstream (e.g. Wernegreen,
Lazarus & Degnan, 2002), keeps binding sites able to interact
with each other (e.g. Nekrutenko ¢t al., 2005), or allows the
gene product to keep working with other gene products
(e.g. Luo etal, 2013). There has been some development
of models that allow site-dependency of substitution (Baele,
Van de Peer & Vansteelandt, 2008).

Another fixed assumption in most analyses is that the same
substitution model applies throughout the shared history of
the sequences being analysed, such that there have been
no changes in the frequencies of the four nucleotides in
the alignment (model stationarity) and in the probabilities
of different substitution types (model homogeneity). Again,
these assumptions might not hold strictly true for all
sequences (Lockhart & Cameron, 2001). Given that we know
that nucleotide composition can vary between lineages, base
frequencies must be able to evolve along the phylogeny
(Gruber, Voss & Jansa, 2007).

Substitution models typically include three
components (Fig. 3): the substitution matrix that describes
the relative rates of change between different nucleotides,
such as the probability that an A will change to a T; the
frequencies of the four nucleotides; and the way in which rates
vary across sites. Within the general time-reversible family
of models, the GTR model is the most complex as it allows
a different rate for each kind of nucleotide change. Other
models within the general time-reversible family differ in how
many of the substitution rates are set to be equal to each other
(Fig. 3). For example, the simplest model [the Jukes—Cantor
(JC) model] assumes that all kinds of substitutions are equally
likely, so can be described by a single substitution rate
parameter (Jukes & Cantor, 1969). More complex models in
this family can incorporate unequal patterns of substitution
types, different rates of transitions to transversions (Kimura,
1980), or different nucleotide frequencies (Felsenstein, 1981).
The general time-reversible family of models is most often

main
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Fig. 3. Models of the nucleotide substitution process. (A) Substitution models of the general time-reversible family comprise the
replacement rates between pairs of nucleotides and the equilibrium base frequencies. In the Jukes—Cantor (JC) model, all six
of the nucleotide replacement rates are equal. In the HKY model, the nucleotide replacement rates can be constrained so that
transitions and transversions occur at different rates. In the general time-reversible (GTR) model, the six replacement types occur
at different rates. These rate matrices can be combined with a proportion of invariable sites and with a gamma distribution to
model rate variation across sites. (B) An example of a five-taxon data set that has been partitioned into two subsets. An HKY
(Hasegawa—Kishino—Yano) model has been assigned to the first subset, whereas a GTR + I+ I' (general time-reversible model
with a proportion of invariable sites and gamma-distributed rates across sites) model has been assigned to the second subset. (C)
Substitution models consist of rate matrices (R;) and base frequency vectors ([ [;). Different combinations of these model components
are shown in different colours along the branches of the trees. Most substitution models assume that the evolutionary process is
time-reversible, homogeneous, and stationary, as shown in the left tree. However, these assumptions can be relaxed by varying
the substitution model across branches. If the rate matrix varies across the tree, but base frequencies are constant, the process is
considered to be stationary, but neither reversible nor homogeneous (second tree). If base frequencies also vary through the tree,

then the process is also non-stationary (third and fourth trees).

applied to nucleotide data because these models are highly
computationally efficient and have been shown to be robust
under a wide range of conditions in simulation studies
(Sullivan & Joyce, 2005).

There are equivalent time-reversible models for amino
acid data (Adachi & Hasegawa, 1996; Yang, Nielsen &
Hasegawa, 1998; Huelsenbeck et al., 2008), but these are
rarely used because they require large numbers of parameters
to be estimated in the analysis. Instead, the most common
approach for protein sequences is to fix the parameter values
using empirical estimates of the relative rates of change for
cach kind of amino acid transition, estimated from large
protein data sets (e.g. Dayhoff, Schwartz & Orcutt, 1978;
Jones, Taylor & Thornton, 1992; Whelan & Goldman, 2001).

In addition to variation in rates between different kinds of
substitution, substitution models can allow for variation in
rates across sites in an alignment (Fig. 3). FFailure to account
for variation in rates across sites can have negative impacts
on Bayesian date estimates (Marshall, Simon & Buckley,
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2006), and different models of rates across sites can result
in changes to date estimates (Brandley et al., 2011; Soubrier
etal., 2012; Jia, Lo & Ho, 2014). Variation in substitution
rate across sites is usually modelled by assuming that the
rates follow a parametric distribution (Yang, 1993, 1994).
The gamma distribution is commonly used for this purpose
because it is non-negative and simple to parameterize, and its
various forms can resemble the lognormal and exponential
distributions. So the popularity of the gamma distribution
is due to its practical benefits rather than any empirical
evidence that it is biologically realistic (Felsenstein, 2001; Jia
etal., 2014).

The choice of substitution model, or the form of the
priors on the parameters of the model, can affect date
estimates (Duchéne et al,, 2015; Marshall ez al,, 2016). In
particular, using an underparameterized substitution model
can cause the amount of genetic change to be underestimated
(Lemmon & Moriarty, 2004). However, the impact of the
choice of substitution model is not always easy to predict. For
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example, one case study reports that a more parameter-rich
model (GTR with empirical nucleotide frequencies) resulted
in strikingly younger date estimates than a simpler model
[Hasegawa—Kishino—Yano (HKY) model with nucleotide
frequencies estimated in the analysis (Marshall et al., 2016)].
But few studies compare date estimates under different
substitution models, so it is difficult to judge how important
the choice of substitution model is to Bayesian molecular
date estimates.

We can take one of two approaches to choosing which
substitution model or models to use, and how to assign
them to different subsets of the data (i.e. the partitioning
scheme). One approach is to use knowledge of the loci being
analysed to select an appropriate model. For example, the
boundaries between genes in multi-locus alignments can be
used to assign separate substitution models to different loci
(or groups of loci), and protein-coding sequences might be
best described by assigning separate substitution models to
the three codon positions. Alternatively, we could use a
model-selection procedure that compares the fit of different
models, or combinations of models, to the data set (Brandley
et al., 2011; Lanfear et al., 2012).

In a ‘total evidence’ dating analysis, a separate substitution
model is needed for the non-molecular characters. The most
commonly used is the Mk model, which is a generalization
of the JC substitution model that allows different numbers of
character states. An extension of this model, the Mkv model,
includes a correction for ascertainment bias in cases where
the data set only consists of variable characters (Lewis, 2001).
The assumption of independence across characters is often
problematic for morphological characters, which tend to
show higher correlation with each other than do nucleotide
sites (Ronquist ez al., 2016).

IV. PRIORS ON THE SUBSTITUTION MODEL

There are many priors and hyperpriors on the substitution
model in Bayesian dating analyses, including those on the
substitution rates, frequencies of the four nucleotides, and
rates across sites. The choice of prior distribution depends
partly on the nature of the parameter being considered.
For example, the relative rates of the different kinds of
substitutions must be non-negative real numbers. We might
have ideas about these relative rates — for example that
transitions are more common than transversions — but we
generally do not have independent information about what
values those rates should take for any given data set.

When we have no information about the values a
parameter should take, we can specify an ‘uninformative’
prior distribution that gives equal weight to a broad range
of possible values. A simple choice of prior for parameters
like the transition rates in the substitution model is the
uniform distribution. However, a uniform distribution gives
the same probability to the extreme values at the edges of a
chosen range as it does to intermediate values. Furthermore,
reparameterization of the uniform prior can artificially inflate

the probabilities of some parameter values over others
(Drummond et al., 2002). This can result in a prior that is ‘too
informative’, so that the prior overwhelms the signal from
the data (Zwickl & Holder, 2004), and the date estimates
might be more strongly influenced by the priors than by
information from the molecular sequences. One way to
avoid this problem is to use a Jeffreys prior (Jeffreys, 1961).
This is a mathematical transformation that ensures that the
prior distribution is invariant under rescaling, which can
lead to more accurate estimates than using uniform priors
(Drummond ez al., 2002).

Some groups of parameters add up to a fixed value, such
as the nucleotide base frequencies which must add up to 1. A
group of parameters with this constraint is often referred to
as a simplex. A Dirichlet distribution is an appropriate prior
for simplex parameters such as base frequencies, because it
treats the frequency of each base as following a continuous
probability distribution with values between 0 and 1. The
Dirichlet prior is flexible because its parameters can be varied
to reflect any expectations of biased nucleotide content.

V. PRIORS ON THE TREE MODEL

(1) Tree priors

One of the central problems in Bayesian molecular dating
1s how to assign prior probabilities to the phenomenally
large number of possible phylogenies that could explain
the sequence data we observe (Rannala & Yang, 1996). In
some cases, we might have specific information about the
topology (relationships) or node times (dates), but we will
rarely have sufficient knowledge to place a prior probability
on every possible phylogenetic history of the sequences.
Instead, Bayesian phylogenetic methods typically rely on
using a function for assigning prior probabilities to different
tree topologies, as well as the prior distributions of node times
across the phylogeny. There are two general approaches to
placing priors on the distribution of node times: one is to
specify a prior probability for each tree topology first and
then specify a prior distribution for all node ages given each
tree topology, and the other is to use a simplified model of
the evolutionary process to assign probabilities to different
sets of topologies and node times.

The two-step, topology-first approach starts by placing a
prior probability on the particular order in which lineages
split from one another and then specifies the prior distribution
of the branch lengths or node times. The most common prior
on topologies is the ‘flat’ or uniform prior, which considers
every possible topology to be equally probable (Huelsenbeck
et al., 2002). We then need a way of assigning probabilities to
different sets of branch lengths for the same topology. Two
commonly used priors favour trees with divergence events
spread evenly between the root and the present: the uniform
prior (Lepage et al., 2007) and the Dirichlet prior (Kishino,
Thorne & Bruno, 2001). Although these two priors differ in
the way in which node times are sampled, their resulting
prior distributions are similar.
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Most Bayesian dating analyses use a stylized model of
the evolutionary process to derive a single distribution for
both the topology and node times. The practical effect of
the tree prior is to give more weight in our analysis to trees
of a certain broad appearance, compatible with a particular
model of the branching process. There are two classes of
models that are typically used to generate tree priors for
molecular dating: the birth—death process, which models
speciation and extinction of lineages; and the coalescent,
which models the evolutionary process within a species or
population (Fig. 4).

(2) Birth—death process

The birth—death process represents the speciation and
extinction of lineages in a highly simplified form (Kendall,
1948; Rannala & Yang, 1996; Gernhard, 2008). This model
has parameters describing the rate of speciation (‘birth’)
and the rate of extinction (‘death’). The simplest 1s the
Yule process, which is a pure-birth model because it only
models speciation without allowing for extinction of any
lineages during the history represented by the phylogeny
(Yule, 1924). The Yule model assumes that the speciation
rate is constant across lineages and throughout the history
of the sequences being analysed. Under this process, the
number of lineages builds exponentially with time, so nodes
will tend to be distributed more towards the tips.

For most data sets, we expect the shapes of phylogenies
to have been affected not just by speciation, but also by
extinction. Birth—death models, in addition to assuming
a constant rate of speciation in each lineage, allow every
lineage to have the same chance of going extinct at any
point in time. As the ratio of the death rate to the birth rate
increases, more of the older lineages in the phylogeny will
have ended in extinction. This tends to remove the deeper
nodes, leading to trees with long branches towards the root
and shorter branches toward the tips (Fig. 4). We rarely
have any independent information about the speciation and
extinction rates, so these parameters of the birth—death
model are usually estimated in the analysis.

The impact of the choice of tree prior on date estimates
can range from being small (e.g. Foster etal, 2017) to
substantial (e.g. Ho et al., 2005; Lepage et al., 2007; Heled &
Drummond, 2015; Ritchie, Lo & Ho, 2017). For example,
the Yule prior has been found to give much older date
estimates than the birth—death prior when applied to the
same data sets (Crisp, Hardy & Cook, 2014; Condamine
et al., 2015). Since the tree prior contributes to the posterior
distribution of all node times, using an inappropriate tree
prior or applying unreasonable constraints on the parameters
potentially influences the accuracy of the date estimates for
every node in the tree.

Incomplete taxon sampling tends to increase the lengths
of the terminal branches of the phylogeny by failing to
sample some of the recent internal nodes (Yang, 2014).
Some of the models that describe the diversification process
can account for incomplete taxon sampling (Yang, 2006;
Heath, Huelsenbeck & Stadler, 2014), for example through
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the addition of a parameter representing the proportion of
extant species that are included in the sampled data set
(Yang & Rannala, 1997). Sampling fraction is normally fixed
in an analysis, since it cannot be estimated if the other
parameters are not known (Stadler, 2009), but the value
chosen can have strong effects on date estimates (Welch
etal., 2005; Beaulieu et al., 2015). Unlike the birth- and
death-rate parameters, the sampling fraction can often be
independently determined based on the estimated number of
extant species from taxonomic compendia (e.g. Foster et al.,
2017). In these cases, the number of missing taxa will depend
on taxonomic definitions, and will be influenced by inclusion
of different taxonomic levels. For example, counting only
recognized species and not subspecies or incipient species
might underestimate the number of recent divergence events
(Etienne & Rosindell, 2012). Most birth—death models that
incorporate sampling fraction assume that the included taxa
represent a random sample of the contemporary taxa, an
assumption that is frequently violated (see Section II.1).
Modifications to the tree prior are available for data sets in
which taxa have been sampled in closely related clusters, or
dispersed across clades so as to represent as much diversity
as possible (Hohna et al., 2011; Ronquist e al., 2016).

There have been several interesting developments of the
birth—death tree prior in recent years, including priors in
which the birth and death rates are allowed to change
over time (Stadler & Yang, 2013). Birth—death tree priors
can also be modified to incorporate information from fossil
morphology through the use of dated tips. One example of
this is the fossilized birth—death prior (Heath et al., 2014).
Dated fossils are treated as nodes in the tree, and all lineages
are modelled as having a uniform probability of producing
relevant fossil evidence. For molecular dating at the species
level, the distribution of fossil evidence among lineages is
incorporated in the model through a ‘sampling proportion’
parameter that reflects the expected fraction of lineages that
leave fossil evidence before they go extinct (or arrive at the
present).

Fossilized birth—death models are one illustration of the
changing nature of fossil evidence in molecular dating,
which is increasingly being used to inform the process of
phylogenetic estimation itself. For example, a total-evidence
dating analysis allows the placement of extinct taxa to be
inferred using morphological characters. Birth—death priors
can also be modified to allow fossils to represent samples of
direct ancestors to descendent lineages (Gavryushkina et al.,
2014). While total-evidence dating methods are becoming
increasingly popular, they can suffer from several problems,
such as undue sensitivity to the tree prior (Donoghue & Yang,

2016).

(3) Coalescent tree priors

If our sequences represent individuals sampled from a single
population or species, assigning probabilities to different
trees 1s usually done using a prior based on the coalescent
process for population genetics (Kingman, 1982; Drummond
et al., 2002). The coalescent traces the history of the sample
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Fig. 4. Branch-length patterns produced by common models for generating tree priors. The patterns are visualized as both (A)
schematic diagrams showing typical reconstructed branch-length patterns on a fixed tree topology; and (B) joint prior distributions
of tree topologies and branch lengths produced by Markov chain Monte Carlo (MCMC) simulation in BEAST 2 and plotted using
Densitree. Models shown include the Yule (pure-birth) process where observed species include all descendants of the common
ancestor; the birth—death process with a high death rate, where older branches appear longer because of extinct lineages (dotted
lines); the birth—death process with low taxon sampling, where terminal branches appear longer due to unsampled species (grey
lines); and the constant-size coalescent, where the pattern of branch lengths is sensitive to the size of the population (grey circles).

backwards in time, allowing each sequence to connect to
a parent in the previous generation. Coalescent priors
typically assume that the data set represents a small sample of
individuals from a larger population in which all individuals
have the same chance of contributing offspring to the next
generation, and that generations do not overlap (Fisher,
1930; Wright, 1931).

The shape of a genealogy under the coalescent is sensitive
to variation in population size over time, because the number
of individuals in the population in any given generation
will influence the chance of sequences sampled from one
generation sharing a parent in the previous generation. The
simplest form of the coalescent assumes that the population
maintains a constant size through time. Variations of the
coalescent have been developed for scenarios in which the

population size varies according to a smooth function, such
as exponential growth (Griffiths & Tavare, 1994), or in which
the demographic history is divided into distinct periods with
different population sizes (e.g. Drummond et al., 2005; Minin,
Bloomquist & Suchard, 2008). These are referred to as
‘skyline plots’ because the reconstructions of population size
through discrete time periods resemble city skylines (Pybus,
Rambaut & Harvey, 2000). However, this resemblance is
lost when the skyline model is used in a Bayesian method,
because the plot of population-size history is averaged over
a large number of skyline reconstructions (Drummond et al.,
2005).

The influence of the coalescent tree prior on date estimates
can be illustrated by studies where changing the prior changes
the date estimates (Boskova, Bonhoeffer & Stadler, 2014).
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For example, date estimates for the origin of an outbreak of
hepatitis C virus obtained using a Bayesian skyline plot were
approximately half those obtained using other coalescent
tree priors, such as the constant-size, logistic-growth, or
expansion-growth models (Golemba et al., 2010). In this case,
the researchers rejected the young dates produced using
the Bayesian skyline plot on the basis of epidemiological
evidence, but such independent information is not always
available.

(4) Multi-locus tree priors

An assumption shared by most tree priors, but which
is particularly problematic for coalescent tree priors, is
that all sites in the alignment have evolved along a
single bifurcating phylogeny. This assumption is violated
under several well-known circumstances, such as when
genetic material has been shared between lineages through
horizontal gene transfer, or where a lineage is a hybrid of two
or more divergent parental lineages (Funk & Omland, 2003).
Loci also can have different histories due to recombination
disconnecting parts of the genome from each other, such that
the last common ancestor of one sampled locus might not
coincide in time with the last common ancestor of other loci
(Edwards & Beerli, 2000). Although tree priors are currently
under development that allow for horizontal gene transfer
and hybridization (Szollési e al., 2015; Vaughan et al., 2017),
these are not yet widely implemented.

Current Bayesian software packages do have methods
for resolving species trees from multiple loci that have
incongruent gene trees. These involve a prior in which
the histories of individual loci are assumed to have unfolded
within the constraints of a species phylogeny (Rannala &
Yang, 2003). The individual gene trees and the species
tree can represent separate parameters and are inferred
in the analysis, for example by jointly estimating them in
*BEAST (‘star beast’) within the BEAST package (Heled
& Drummond, 2010). The species-tree coalescence method
in MrBayes formulates the distribution of the gene trees
conditioned on the species tree as part of the prior, so the
species tree is updated jointly with the gene trees (Ronquist

etal., 2012).

(5) Calibrations

On their own, the models used to generate the tree priors
can only provide information about relative node times, for
example whether more speciation events occur earlier or
later in the history of the clade. In practice, the goal of most
Bayesian dating analyses is to infer an absolute timescale
of evolution. In some rare cases, independent estimates
for the absolute rate of molecular evolution are available.
For example, mutation rates for Drosophila calculated from
laboratory breeding experiments have been used to date
the diversification of endemic Hawaiian Drosophila lineages,
resulting in much younger date estimates than those
obtained using geological calibrations (Obbard et al., 2012).
Alternatively, previous estimates of substitution rates can be
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Fig. 5. Calibrations can be incorporated as probability
densities for the ages of nodes in the tree. Calibration
densities at internal nodes can be implemented as (top
to bottom, red): uniform distribution; uniform distribution
with hard minimum and soft maximum bounds; lognormal
distribution; and exponential distribution. Calibration densities
at terminal nodes can be implemented as (top to bottom, blue):
uniform distribution; normal distribution; empirical calibrated
radiocarbon distribution; and point value.

used to inform the prior distribution of branch rates (Hipsley
& Miiller, 2014; Nelson, Andersen & Brown, 2015; Marshall
et al., 2016).

In most Bayesian dating analyses, the absolute rate of
change is estimated by including a temporal constraint on
at least one node in the tree (Fig. 5). This is usually done
either by fixing the age of the node or by specifying the
prior distribution of its age (Thorne, Kishino & Painter,
1998; Drummond et al., 2006; Yang & Rannala, 2006;
Ho & Phillips, 2009). Although this is often referred to
as the ‘calibration prior’, it is preferable to refer to this
temporal information as a calibration density, because the
time-calibrating information specified does not always strictly
correspond to the prior distribution on the divergence time
(Heled & Drummond, 2012). The fossilized birth—death tree
prior described in Section V.2 provides a different approach
to incorporating fossil evidence into the tree prior.

The use of calibrating information, such as palacontologi-
cal or biogeographic information, is subject to several sources
of uncertainty (Ho & Phillips, 2009). First, there 1s the mea-
surement uncertainty that is associated with the dating of
fossils or geological events. For example, the uncertainty in
geochemical dating, combined with that in modelling the
growth of volcanoes and allowance for cooling to a habitable
temperature, has given confidence limits on the ages of the
Hawaiian islands (Obbard et al., 2012). In analyses of molec-
ular data from ancient samples or from rapidly evolving
pathogens, the calibration densities can be chosen to reflect
uncertainty in the age of the sequence itself (Shapiro et al.,
2011; Rieux & Balloux, 2016). For example, the uncertainty
in radiocarbon dating associated with an ancient DNA sam-
ple can be taken into account when specifying the prior
distributions for the ages of the terminal nodes (Molak et al.,
2015).

A second source of uncertainty in calibrations involves
their assighment to nodes in the tree, given that the
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taxonomic affinities of fossils might not be known with
confidence (e.g. Lee, Oliver & Hutchinson, 2009). For
example, changing the position of a key fossil to the basal
node of a branch (stem) instead of the top of the same branch
(crown) resulted in more than doubling of the age of lineages
in phylogeny of Araucariaceac and related conifer lineages
(Biffin, Hill & Lowe, 2010). One way of approaching this
problem is to account for the uncertainty in fossil placement
using a fossilized birth—death prior or by inferring the
position of the fossil taxa in a total-evidence dating analysis
(see Section V.2).

The third source of uncertainty arises from decisions about
how the calibrating information relates to the age of the node.
In some cases, the calibrating information is considered to
provide a minimum age bound. For example, an identified
fossil might be considered definitive evidence that a lineage
existed at that time, so that its parent node must be at least as
old as that fossil. More controversially, evidence of ancestral
taxa is sometimes interpreted as placing a maximum date
on a node by arguing that the descendent nodes could not
have arisen before that time. Generally, absolute maximum
age bounds are difficult to justify because of the limitations
on proving absence of a lineage at a given time, and the
potential for ‘ancestors’ and ‘descendants’ to co-exist. In
practice, however, most dating analyses require specification
of maximum ages either as absolute (hard) bounds or by
defining a declining tail of probability on the age of a node
(soft maximum). But maximum age constraints can have a
strong impact on molecular date estimates, and their effects
need to be evaluated carefully (Cracraft ez al., 2015; Mitchell,
Cooper & Phillips, 2015).

The impact of maximum age bounds can be illustrated
by considering molecular date estimates for the origin of
animal phyla. While earlier molecular date estimates placed
the origins of animal phyla long before the first undisputed
animal fossils (see Bromham, 2006), more recent Bayesian
date estimates have been considered more consistent with
the timing of appearance of animals in the fossil record
(e.g. Aris-Brosou & Yang, 2003; Peterson et al., 2008; Erwin
et al., 2011; dos Reis et al., 2015). But these estimates can be
sensitive to the maximum age bounds that are specified in the
analysis, which can overwhelm the signal from any other age
constraints included in the analysis (Battistuzzi et al., 2015).
For divergence times to be compatible with the constraints
imposed by these calibrations, the Bayesian analysis must
infer date estimates that do not exceed the maximum age
constraints, resulting in very high rates of change along the
earliest lineages of the metazoan phylogeny (Lee, Soubrier
& Edgecombe, 2013). In cases such as these, the Bayesian
date estimates are predominantly reflecting the prior beliefs
about divergence times, rather than information from the
sequence data.

An alternative approach to setting a hard maximum or
minimum bound on the date of a node is to describe the
possible age of a calibrated node using a probability density
(Fig. 5). For example, many researchers use a lognormal
distribution of ages on the calibrating node, with the
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minimum value of the distribution defined by fossil evidence,
the mean at the expected age of the node, and with a tail that
describes the decreasing probability for increasingly older
dates (Ho & Phillips, 2009). The lognormal distribution
1s described in terms of two parameters, the mean rate
and its standard deviation. The exponential distribution is
described by a single parameter from which both the mean
rate and the standard deviation are derived. In these cases,
there is a ‘soft’ maximum implicit in the prior distributions,
because values at the tails of the distribution are given a low
probability. However, the soft maximum does not exclude
the possibility of older dates, which means that it is possible
for the data to overwhelm the specified maximum (e.g.
Sanders & Lee, 2007; Jarvis et al., 2014).

Given the uncertainty in the association between
calibrating information and the age of a node in the phy-
logeny, calibrations must be regarded as hypotheses about
evolutionary history, rather than as error-free observations.
It is therefore appropriate that calibration uncertainty is
modelled as part of the Bayesian dating procedure. One
way to do this is to use a model of fossil preservation
and discovery to develop appropriate probability densities
for calibrated node ages (Wilkinson efal, 2011; Heath
et al., 2014). Alternatively, the parameters of the calibration
densities can be assigned hyperparameters that are estimated
during the analysis (Heath, Holder & Huelsenbeck, 2012).

In most Bayesian dating methods, the chosen calibration
densities do not act in isolation simply to provide a timescale
for the nodes. Calibration densities on nested nodes define
hierarchical structure in the relationships among the sampled
taxa, making some tree topologies less probable. So placing
information on the ages of some nodes in the tree can have
wider effects on phylogenetic inference (Ho & Phillips, 2009).
Calibrations at internal nodes tend to have their strongest
influence on estimates of rates along the descendent lineages
(Duchéne, Lanfear & Ho, 2014).

Therefore, although calibrations are usually specified
separately for particular nodes in the tree, the calibration
densities interact with the tree prior, yielding a joint prior
for the age of every node in the tree (Heled & Drummond,
2012). Furthermore, when there is temporal overlap along a
branch between a pair of calibrations, each of the densities
has to be truncated so that the ancestral nodes are older
than the descendent nodes (Rannala, 2016). The practical
upshot of this is that the joint prior distribution for the age of
each calibrating node might actually end up being different
from the probability density specified by the user (Warnock,
Yang & Donoghue, 2012). To check for interaction between
the calibration densities and tree priors, the user-specified
densities and joint prior distributions of the node times
should be compared in order to identify any discrepancies
(Duchéne et al., 2014; Warnock et al., 2015; Brown & Smith,
2017). However, the problem of interaction between multiple
calibration densities is more difficult to address (Heled &
Drummond, 2012) and it is not always straightforward
to ensure that the joint priors match the user-specified
calibration priors (dos Reis, 2016; Rannala, 2016).
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Adding more calibrations throughout the phylogeny
should generally help to inform the estimation of model
parameters, particularly those relating to rate variation
across the tree (Duchéne etal, 2014; Phillips, 2015).
However, increasing the number of calibrations by accepting
poorly constrained fossil evidence or divergence dates with
questionable placement in the phylogeny might have a
negative impact on accuracy (Parham etal., 2011). Not
surprisingly, using ‘early but risky’ calibrations, derived
from uncertain fossil data, can result in much older date
estimates than a conservative approach of using only ‘late
but safe’ calibrations based on fossils that have been dated
and identified with confidence (Sauquet et al,, 2012). For
example, inclusion of calibrations based on microfossil data,
such as pollen records, will tend to extend the basal ages of
plant phylogenies by providing older calibrations than using
only rarer macrofossils (Thornhill et al., 2012; Christin et al.,
2013).

VI. PRIORS ON THE BRANCH RATES

(1) Branch-rates priors

The popularity of Bayesian dating methods has, to a large
extent, been borne on their capacity to incorporate various
models of rate variation across branches (dos Reis, Donoghue
& Yang, 2016). There are a plethora of available priors
on branch rates, usually referred to as ‘clock models’,
and many of them have been implemented in widely
used software for Bayesian phylogenetics (Heath & Moore,
2014; Ho & Duchéne, 2014). Here we will mention some
key characteristics of these priors rather than aim for an
exhaustive catalogue.

One way to differentiate some of the most common
branch-rates models is to compare the number of different
rates that are allowed () with the number of branches in the
phylogeny (#) (Fig. 6). In a constant-rate model (‘strict clock’),
all branches share a single rate (k= 1). In a discrete-rates
model (including ‘local clocks’), branches are assigned rates
from a number of rate categories (1 < £ < n). In a ‘relaxed
clock’ model, every branch can have its own rate (k = n).
Another key difference between branch-rates models is the
relationship between branches, nodes, and rate changes.
Some branch-rates models assume that rate changes happen
only at nodes, regardless of the length or duration of the
branch. Other models allow the rate to change along a
branch, for example considering the probability of rate
change as dependent on the branch duration (Guindon,
2013; Huelsenbeck, Larget & Swofford, 2000; Lepage et al.,
2006).

(2) Constant rates (‘strict clock’)

The simplest branch-rates prior is a constant-rate model
(also known as a ‘strict clock’), which allows only one
substitution rate across the whole phylogeny. If rates vary
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branch rates and in the pattern of rate variation. A strict clock
assumes a constant rate across all branches. A local-clock model
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relaxed-clock model allows all of the branch rates to be distinct.
These branch rates can either be correlated between branches
(autocorrelated relaxed clock) or independently and identically
distributed (uncorrelated relaxed clock).
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stochastically and the variance between branches is not large,
then the constant-rate model can produce date estimates
with comparable accuracy and superior precision to those
obtained using variable-rates models (Brown & Yang, 2011).
However, constant-rate models have poor accuracy in the
presence of non-negligible rate variation (Wertheim et al.,
2009). Given the number and variety of biological traits
and environmental factors that have been implicated as
mfluences on the substitution rate, we should be wary of
assuming that all of the sampled lineages in a data set share
the same underlying rate of change (Welch & Bromham,
2005).

Rate constancy is sometimes assumed for ‘shallow’
phylogenies where the root divergence is relatively recent.
However, the forces that shape differences in the rate of
molecular evolution can vary not only between closely
related species, but even between conspecific populations
or individuals. For example, mutation rate can be influenced
by differences in average age (Kong et al, 2012), growth
rates (Lanfear et al., 2013), physiological stress (Matsuba
et al., 2013), physical condition (Sharp & Agrawal, 2012), or
nutritional status (Agrawal & Wang, 2008). Therefore, rate
constancy should never be assumed for any data set, but
should always be explicitly tested.

(3) Discrete rates (‘local clocks’)

Some methods allow variation in rates across the tree, but
assume that some of the branches will share the same rate,
such that there are fewer rate categories than there are
branches in the tree (Fig. 6). There is a range of approaches
for assigning branches to rate categories, and there is no
single accepted terminology for referring to this set of
models, but they have been variously described as local
clocks, discrete-rate models, or multi-rate molecular clocks
(Ho & Duchéne, 2014). The branches within a rate category
might be found in different parts of the phylogeny or they
may be clustered together.

Branches might be assigned to rate categories based on
some independent information about the expected patterns
of rate variation (Yoder & Yang, 2000), for example by
defining virus lineages according to their host and allowing
one rate for each host type (Worobey, Han & Rambaut,
2014). But this ad hoc assignment of rate categories has been
rare in Bayesian molecular dating, even in cases where there
1s good evidence for distinct shifts in substitution rate. Instead,
most researchers have favoured a stochastic approach to
assigning branches to rate categories. For example, a random
local clock involves testing whether each branch inherits the
rate from its parent branch (Drummond & Suchard, 2010).
The two key parameters in this model are the number of rate
changes along the tree, which is described using a Poisson
prior distribution, and the relative values of the substitution
rates, drawn from a gamma prior distribution. Because each
branch will inherit the rate from its parent branch unless
there is evidence for a change, the random local clock will
tend to favour fewer rate changes (Drummond & Suchard,
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2010). The random local clock collapses to a constant-rate
model (strict clock) if the number of rate changes is zero.

Some discrete-rates models require a parameter that
mnforms the number of rate categories. For example, the
number of rate categories can be determined using a
Dirichlet process prior (DPP), which assigns branches to rates
drawn from distinct rate categories. Using this approach, the
number of rate categories is treated as a random variable, as
are the value of the rate for each category and the assignment
of branches to rate categories (Heath et al., 2012).

(4) Relaxed molecular clocks

The model of rate variation can be relaxed further by
allowing every branch in the phylogeny to have a different
rate, which is the defining feature of relaxed clocks (Fig. 6).
The rates can be assumed to be independently and
identically distributed, as in uncorrelated relaxed clocks (e.g.
Drummond et al., 2006), or related between neighbouring
branches, as in autocorrelated relaxed clocks (e.g. Thorne
et al., 1998).

In uncorrelated models of rate variation, every branch is
assigned a rate independently of other branches (Drummond
et al., 2006; Rannala & Yang, 2007). In this case, there is no
relationship between the rates along neighbouring branches,
so that a branch with a low rate is no more likely to give rise
to a descendent branch with a low rate than a branch with
a high rate, or vice versa. Most uncorrelated relaxed clocks
involve each branch rate being drawn independently from a
parametric distribution, such as a lognormal distribution or
exponential distribution (Drummond ¢t al., 2006; Rannala
& Yang, 2007). There are surprisingly few empirical studies
of observed patterns of rate variation across branches in a
phylogeny, independent of Bayesian estimation procedures
(Bininda-Emonds, 2007; Dornburg et al., 2012; Phillips,
2015). As a consequence, the form of the distribution of
rate values is usually chosen for statistical convenience,
rather than being based on any biological understanding
of evolutionary rates.

But many aspects of biology that influence rates of
molecular evolution, such as life history, environment, or
population structure, are likely to be more similar between
related lineages. So we might expect rates to evolve along
a phylogeny, just as other species traits do (Gillespie, 1984;
Thorne et al., 1998; Bromham, 2011). Autocorrelated relaxed
clocks assume that there will be some connection between
the rates along neighbouring branches. For example, in
the autocorrelated exponential relaxed clock, the rate can
change at each node, with the rate for the daughter branch
drawn from an exponential distribution with a mean equal to
the rate along the parent branch (Aris-Brosou & Yang, 2002).
This provides an episodic model of rate change, where the
rates are related across branches, but the degree of change is
independent of the duration of each branch.

In some other autocorrelated relaxed clocks, rate changes
can occur not only at nodes, but also along branches.
For example, the compound Poisson process makes the
assumption that branch rate can vary as a Poisson process,
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so that rates can change along branches, with longer
branches more likely to experience multiple rate-change
events (Huelsenbeck et al., 2000). Each new rate is based
on the ancestral rate multiplied by a variable drawn from
an appropriate distribution. The compound Poisson process
can be described using three parameters, each with an
appropriate prior distribution: the ancestral rate; the number
of expected rate changes per unit of branch length, which
usually takes a fixed value or an exponential hyperprior; and
the standard deviation of the rate multipliers (the variable by
which the ancestral rate is multiplied).

Autocorrelated relaxed clocks can employ continuous
models of rate change, for example where rates change by
Brownian motion along the tree. In these continuous models,
the rate along cach branch is sampled from a distribution
with a mean equal to the rate along the parent branch, but
the variance is proportional to the branch length. Therefore,
longer branches are more likely to undergo a greater degree
of rate change (Thorne etal, 1998; Kishino et al., 2001).
These models have a variance parameter that describes the
way in which rates vary from one branch to the next. If
the value of the variance parameter is small, then the rate
along the daughter branch is very similar to the rate along the
parent branch (Thorne et al., 1998). If the variance parameter
is zero, the daughter rate is always the same as the parent rate
and the model reduces to the constant branch-rates model
(strict clock).

All of the autocorrelated relaxed-clock models assume
that rate variation is stochastic, such that rate wanders up
and down. One potential problem with these branch-rates
models is that the random fluctuations in rate can allow
substitution rates to ‘wander off’ into extreme values.
The Cox—Ingersoll-Ross model has been proposed as a
solution to this problem (Lepage et al., 2006; Lepage et al.,
2007). In this branch-rates model, substitution rate varies
continuously and stochastically over time, but there is a
spring-like constraint on rate variation that draws rate values
back towards a mean value. The force of the ‘spring’ that
draws rates back is proportional to the difference between
the rate on the parent branch and the mean rate of the
distribution. This gives the Cox—Ingersoll-Ross model an
inbuilt reluctance to allow extremely high or low rates.

A second potential limitation of stochastic models of rate
variation is that all of the common models assume random
changes in rate, but there are many cases in which we might
expect rates to undergo directional change. For example,
rates of molecular evolution are associated with body size in
mammals (Welch, Bininda-Emonds & Bromham, 2008), and
most placental mammal lineages increased in average size
after the Cretaceous—Paleogene boundary (Slater, 2013).
Therefore, we might expect a concerted slowdown in
substitution rates in many mammalian lineages in the part of
the phylogeny corresponding to the period of radiation into
larger body sizes (Bromham, 2003; Springer et al., 2003).
Such concerted changes would be hard to detect using
Bayesian molecular dating methods, and could result in
biased date estimates (Lee & Ho, 2016).
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(5) Partitioned models of branch rates

We expect that some parts of the genome will change
more quickly than others, so in analyses of multi-locus data
sets, each locus can be assigned a relative-rate parameter
to account for differences in evolutionary rates across
loci. However, such a model will not capture differences
between loci in their patterns of rate variation across
branches. For example, if loci have been subject to
differing degrees of selection, they might show different
patterns and rates of substitutions across the branches of
the phylogeny (Gillespie, 1991). For example, the gene
for prestin, a protein motor associated with detection of
vibration by hair cells, has undergone an accelerated rate
of evolution in the echo-locating lineages of bats and
cetaceans (Liu etal, 2010). Under these circumstances,
multiple models of branch rates are required to account
for the heterogeneity in branch-rate patterns across loci
(Duchéne & Ho, 2014).

Each relaxed-clock model allows a different rate for each
branch in the tree, so having multiple relaxed clock models
brings a considerable risk of overparameterization. One way
to mitigate this risk is to use a statistical approach to choose
the number of clock models. For example, models of branch
rates can be assigned to loci according to inferred patterns
of among-linecage rate variation (Duchéne & Ho, 2014).
Various methods have been developed for identifying the
number of distinct patterns of among-lineage rate variation
in multi-locus data sets (e.g. dos Reis etal, 2012; Snir,
2014; Duchéne, Foster & Ho, 2016), but these generally
involve the assumption that all loci share the same tree
topology. Branch-rate models can be assigned to subsets of
the data using other criteria. For example, the data set can
be partitioned according to relative evolutionary rate (dos
Reis et al., 2012) or by codon position (Ho & Lanfear, 2010).
Applying a partitioning scheme can lead to improvements in
the precision of date estimates (Zhu, dos Reis & Yang, 2014).
However, some studies have shown that the date estimates are
relatively robust to the choice of data-partitioning method,
unless there is severe model misspecification (Angelis et al.,
2017; Foster & Ho, 2017).

(6) Modelling branch-rate variation

The choice of branch-rates prior can have a substantial
impact on estimates of divergence times and evolutionary
rates (e.g. Drummond ¢t al., 2006; Lepage et al., 2006; Linder,
Britton & Sennblad, 2011; Crisp et al., 2014). Many studies
compare the results of applying several branch-rates models
to their data, and it is not unusual for these different models
to give very different date estimates (e.g. Berbee & Taylor,
2010; Magallon, 2010; Papadopoulou, Anastasiou & Vogler,
20105 Peterson et al., 2008; Bellot & Renner, 2014; Crisp
etal., 2014).

Even in the relatively rare cases where there is indepen-
dent knowledge of patterns of rate variation, Bayesian dating
methods using different branch-rates models can produce
widely different results. For example, parasitic plants typically
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model, because almost all users assume a rooted binary tree in Bayesian dating analyses. Following the setting of a substitution
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by Markov chain Monte Carlo (MCMC) analysis. The performance of the MCMC analysis needs to be monitored by checking
for convergence to the target distribution and for sufficient sampling. Extending the MCMC analysis or running replicates might
be required. Various assessment steps should also be taken, including model comparison using Bayes factors and testing of model

adequacy.

have higher substitution rates than their non-parasitic rela-
tives (Young & dePamphilis, 2005; Bromham, Cowman &
Lanfear, 2013). Encouragingly, Bayesian dating methods can
detect these higher rates in parasitic plant lineages (Bellot &
Renner, 2014). But the inferred distribution of rates among
branches varied between models: the random local clock
gave high rates within the parasitic clade (therefore younger
dates), whereas uncorrelated relaxed clocks placed high rates
on the stem (ancestral) lineage (therefore older dates). So
even when we have reliable empirical knowledge about rate
variation, we can still find ourselves without a sound basis for
choosing which branch-rates model to use. There is ongoing
debate about whether uncorrelated or autocorrelated
relaxed clocks provide a better fit to real molecular data, but
this is likely to vary from one data set to another (Lepage ¢t al.,
2007; Ho, 2009; Ho, Duchéne & Duchéne, 2015; Lartillot,
Phillips & Ronquist, 2016).

Relaxed clocks have led to more relaxed attitudes about
molecular dating, because they allow researchers to have
their cake and eat it too: recognize that rate variation
1s commonplace, yet still use molecular data to estimate
evolutionary timescales. If different clock models yield
different date estimates when applied to the same data,
then we know that the disparities reflect the assumptions
that we are making. Therefore, the predictive power of
the analysis depends on the degree to which the chosen
model provides an appropriate description of the data. If the
assumptions of the method are violated by the underlying
data, then there is as much potential for rate-variable
Bayesian date estimates to be wrong as there is for strict-clock
estimates to be wrong when the assumption of rate uniformity
is violated. It is therefore critical that the sensitivity of
the date estimates to the models and priors is carefully
evaluated (Fig. 7).
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One way to check if the model of rate change is realistic
is to ask whether the inferred substitution rates in any part
of the tree fall within the likely range of substitution rates
for those lineages. Empirically determined rates of molecular
evolution can provide a guide to the plausibility of rate
estimates; a careful evaluation of the data or the assumptions
1s warranted whenever estimates are an order of magnitude
higher or lower than any previously reported (Bromham &
Hendy, 2000; Lee et al., 2013; Springer et al., 2013; Phillips,
2015). For example, surprisingly young estimates of the date
of origin of the endangered Devil’s Hole pupfish (Martin
et al., 2016) have been questioned on the grounds that the
assumed mutation rate was approximately 20- to 50-fold
greater than the typical vertebrate mutation rate (Saglam,
Baumsteiger & Miller, 2017). Although unusually high or low
rates in a previously unexamined lineage cannot be ruled
out, they do suggest the need for robust interrogation of the
resulting date estimates.

VII. CHOOSING THE RIGHT MODEL

(1) Assessing model fit

Choices of models and priors can affect the answers produced
by Bayesian dating methods, so we need a reliable means of
selecting the most appropriate models to use in our analysis.
Where we are uncertain about the right model, we need a
way of reporting results over a range of equally plausible
models.

Bayesian model fit is often measured by the marginal
likelihood, which measures the probability of the data given
the model, averaged across the prior distribution of the
parameters in the model. Models can be compared by taking
the ratio of their marginal likelihoods, which is referred
to as the Bayes factor. The Bayes factor is often used as
an indication of which model, averaged across the space
of parameter values, is more likely to have generated the
data (Kass & Raftery, 1995). A Bayes factor greater than 1
indicates that the data support the numerator model more
than the denominator model. A number of guidelines have
been proposed for interpreting the level of support for the
numerator model. For example, support may be considered
‘strong” when the Bayes factor is greater than 10 (Jeffreys,
1961) or 20 (Kass & Raftery, 1995). In phylogenetics, Bayes
factors are used to compare components of the likelihood
model, including the substitution model (Brandley, Schmitz
& Reeder, 2005) and the tree model (Bergsten, Nilsson &
Ronquist, 2013), as well the priors on trees and branch rates
(Baele et al., 2012).

The use of Bayes factors requires computation of the
marginal likelihood, but this this would require us to integrate
over all parameter values for the model, and this is not
analytically possible except in some very trivial cases. So
instead we have to approximate the marginal likelihood by
sampling parameter values using MCMC (Sinsheimer, Lake
& Little, 1996; Suchard, Weiss & Sinsheimer, 2001; Xie
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et al., 2011). The basic idea is to take a random sample of
possible parameter values, calculate the likelihood given
those values, and use these likelihoods to approximate
the marginal likelihood. MCMC methods differ in the
distribution from which samples are drawn and how the
estimate 1s calculated as a result. The simplest methods
draw samples from a single distribution over parameter
values, which can be done with a single MCMC run. These
include harmonic-mean methods, which sample from the
posterior (Newton & Raftery, 1994), and arithmetic-mean
methods, which sample from the prior. The harmonic-mean
estimate 1s easy to compute from an existing posterior sample;
however, it can have an unacceptably high variance and
tends to overestimate the marginal likelihood, making model
selection unreliable (Lartillot & Philippe, 2006; Baele, Lemey
& Suchard, 2016).

A more reliable approach to approximating the marginal
likelihood is to draw samples from multiple distributions
arranged along a path going from the prior to the posterior.
This method 1s used in the path-sampling estimator (Lartillot
& Philippe, 2006; Lepage et al., 2007) and the stepping-stone
sampling estimator (Xie e al., 2011). These path-sampling
methods typically consider a set of power posteriors, each
of which is the prior multiplied by the likelihood raised to a
power ranging from zero to 1. Samples are drawn from the
prior when the power is zero, from the posterior when it is 1,
and from a range of intermediate distributions in between.
These path-sampling methods have been shown to select the
correct model more frequently than methods based on the
harmonic or arithmetic mean (Fan ez al., 2011). However,
they also require multiple specialized MCMC runs and are
therefore more computationally expensive.

It is important to bear in mind the limitations of
using Bayes factors to select models for molecular dating
analysis. This approach compares two models, including the
specification of the priors, so a poor choice of priors can also
influence the Bayes factor. For example, if the Bayes factor
1s used to compare two branch-rates models, the fit of the
data is reflected not only in the form of the changes in rates
over the tree (such as uncorrelated versus autocorrelated rate
change), but also the specification of the prior distributions
of substitution rates and the rate-change parameters. So the
Bayes factor cannot in itself reveal why a particular model
has a better fit to the data than another.

(2) Model averaging

In some cases, we might find that several different models
all have similar marginal likelihoods, meaning that the
approximate Bayes factor gives us little reason to choose
between competing models. What should we do in such
cases? Common practice is to accept the model with the
fewest parameters, but sometimes the competing models
have identical numbers of parameters. A potential solution
is to report the range of date estimates across all equally
acceptable models. This can be done nformally, by
rerunning the analysis using each of the candidate models.
Alternatively, it can be carried out formally using a
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model-averaging approach, which allows the data to be
evaluated by a weighted average over a set of models, rather
than one model at a time (Li & Drummond, 2012). This
represents a fully Bayesian treatment of the problem of
model uncertainty.

We can think of all the variations on the hierarchical model
as occupying different positions in the space of all possible
models. The Bayesian analysis can explore and compare
different evolutionary models in essentially the same way
that it explores and compares different phylogenies and
parameter values, using stochastic sampling of the model
space with MCMC (Huelsenbeck, Larget & Alfaro, 2004).
In addition to being able to propose a new parameter value,
tree topology or branch lengths at each step of the chain,
the MCMC can propose a different model at each step. In
this way, the resulting date estimates are weighted by the
posterior probabilities of the models considered.

Although model averaging appears to present a healthy
approach to uncertainty, its practical benefits in Bayesian
dating remain unclear. There are cases in which model
averaging results in a better statistical fit to the data, for
example by averaging over possible substitution models and
data subsets (Wu, Suchard & Drummond, 2013), or selecting
an appropriate branch-rates model (Li & Drummond, 2012).
However, there are also examples from both empirical and
simulation studies in which model averaging did not improve
phylogenetic outcomes. For example, model averaging did
not increase the chances of selecting the correct topology
for a data set of mammalian protein-coding sequences when
compared with the two best-fitting models (Li & Drummond,
2012), and model averaging did not always correctly identify
the branch-rates model used to simulate the evolution of
synthetic sequence data (Duchéne & Ho, 2014).

(3) Model adequacy

Choosing models based on either model fit or model
averaging can indicate the best solution given the available
models, but it does not guarantee that the selected model
provides an adequate description of the evolutionary process
that generated the data (Huelsenbeck et al., 2001; Bollback,
2002; Gelman et al., 2014). We need to face the sad fact
that even the best-fitting available model might not be good
enough to make sound evolutionary inferences. Therefore, it
is desirable to assess the adequacy of each candidate model
by asking whether the data could have been generated by
the chosen models.

One method for assessing model adequacy in Bayesian
molecular dating is the use of posterior predictive simulations
(Bollback, 2002; Duchéne et al., 2015). The ‘predictive’ part
of this label refers to the general principle that if the model
and parameter values from the posterior distribution are
a good description of the data, then we ought to be able
to use them to predict outcomes when we ‘run evolution
again’ using simulations. We can simulate evolution of
DNA sequences using the best-fitting model and parameter
values to see if we would get a similar pattern to our
real data. Clearly, we cannot expect exactly the same tree
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and sequences to be produced by simulation, so instead of
comparing the actual phylogenies, we need some test statistic
that allows us to characterize the phylogeny as a whole.
Using an appropriate summary statistic to describe each
phylogeny, we can ask whether the characteristics of our
observed data are similar to those of data simulated using the
same model and analysed in the same way (Rubin, 1984).
A number of test statistics have been proposed to assess the
components of the model in Bayesian dating. Some of these
focus on the overall fit of the substitution model (Goldman,
1993; Huelsenbeck et al., 2001; Bollback, 2002; Foster, 2004,
while others examine the adequacy of the hierarchical model
(Duchéne et al., 2015). Potentially, statistics based on tree
topology and branch lengths can be used as test statistics for
evaluating the adequacy of the tree model (Blum & Frangois,
2005; Hua & Bromham, 2016).

VIII. SENSITIVITY TO THE PRIORS

The priors play a critical role in Bayesian dating analyses
and, given that they can have a large impact on the date
estimates obtained, it is important to examine them carefully.
The examples we have referred to show that the choice of
tree prior, branch-rates prior, and other priors can have
important effects on the estimates of the substitution rate
and divergence times. Furthermore, the choice of priors
can influence Bayesian model selection using marginal
likelihoods, because these are weighted by the priors. So for
any Bayesian molecular dating analysis we should investigate
the impact of the priors on the outcomes of the analysis. We
can do this by comparing the relative impact of the priors and
the data (likelihood) on the posterior distribution (Gelman
etal., 2014).

One way to test the influence of the priors is to remove
the impact of the likelihood by running the molecular dating
analysis without any sequence data (Drummond ¢ al., 2006).
As the MCMC chain draws samples of trees and parameters,
there are no sequence data to evaluate the likelihood, so that
we are sampling from the prior distribution. If this provides
a close match to the posterior distribution that we obtain
from an analysis of the data, then this suggests that the priors
have had a very strong influence on the parameter estimates
and that the sequence data have not changed the picture.
We suggest that it is good practice to investigate different
combinations of tree priors and calibration priors. Although
sampling from the prior is becoming a common practice in
molecular dating (e.g. Dornburg et al., 2012; Christin et al.,
2013; Crisp et al., 2014; Brown & Smith, 2017), there are as
yet no established criteria for evaluating how different the
prior and posterior should be in order to have confidence
that the date estimates are influenced by the data and not
simply a reflection of the priors.

Another way to test the influence of the prior on the date
estimates is to compare the relative impact of the choice of
priors on the posterior (Gelman et al., 2014). For example,
the effect of using different tree priors or branch-rates priors
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can be examined. The greater the change in the posterior,
the more sensitive is the posterior to the prior (Brown
& Yang, 2010; Inoue, Donoghue & Yang, 2010; Stadler
& Yang, 2013; dos Reis, Zhu & Yang, 2014; Warnock
et al., 2015). However, this test of the influence of the prior
cannot necessarily be applied to all parameters. Parameters
of this kind include the branch rates and node ages, which
are semi-identifiable because there is an effectively infinite
number of combinations of these that can give the same
product (Rannala, 2002). Given this identifiability property,
any information that is used to calibrate the molecular clock
is always expected to be reflected in the posterior.

What can be done if the signal from the priors is found
to speak more loudly than the signal from the data? An
intuitive way to reduce the sensitivity to the priors is to
increase the amount of data. However, in the case of rate
estimates and divergence times, the uncertainties in the
posterior and the impact of the prior will not disappear
even with an infinite amount of sequence data (Rannala &
Yang, 2007; Zhu, dos Reis & Yang, 2014). Irrespective of
the amount of data, uncertainty in the posterior distribution
of node ages 1s influenced by uncertainty in fossil calibrations
(Yang & Rannala, 2006; dos Reis & Yang, 2013). It is worth
emphasizing that the priors on node ages are among the few
priors where we can gain real leverage from independently
derived information (in true Bayesian fashion). Since correct
calibrations can alleviate the impact of a misspecified rate
prior, calibration densities have a particularly large influence
on the posterior distribution of node ages (Rannala & Yang,
2007; Inoue et al., 2010; Zhu et al., 2014). Careful assessment
of calibration densities is crucial to any molecular dating
analysis.

In addition to careful evaluation of the reliability
of palacontological or biogeographic evidence used in
molecular dating, assessment of calibration densities should
include the two checks described above: sampling from the
prior, and changing the priors. Running the dating analysis
without sequence data allows us to check if the joint prior
for the age on a calibrated node differs from the calibration
densities that we initially specified (Warnock et al,, 2012;
Christin et al., 2013; Joyce et al., 2013; Warnock et al., 2015).
When there is mismatch between the joint priors and the
user-specified densities for calibration, Warnock ez al. (2015)
suggest reparameterizing the chosen densities until all pieces
of independent calibrating information are reflected in the
effective prior.

The second check for assessing calibrations is to test how
sensitive the posterior distribution of node ages is to the
calibration densities. This can be done by conducting the
molecular dating analysis using only a subset of the cali-
brations. The posterior age estimates can then be compared
with the calibration densities that had been omitted in
the analysis (Near, Bolnick & Wainwright, 2005; Marshall,
2008; Dornburg et al., 2011). However, the results of such
cross-validation tests are difficult to interpret, because of the
way that priors are combined in the analysis with other cali-
brating information and with the tree prior (see Section V.5).
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Therefore, consistency in posterior estimates of node times
should not be used as the only criterion to select calibrations.

IX. GETTING AN ANSWER

Rather than producing point estimates for node ages, a
Bayesian molecular dating analysis produces a posterior
distribution that is the combined information from the data,
the likelithood model, and the priors (Fig. 1). But obtaining
the posterior distribution can be a complex and difficult
process. In order to use a set of samples from the MCMC
to represent the posterior distribution, we need to solve four
problems. First, we need to discard the initial portion of the
chain where it drew samples that were poorly representative
of the posterior distribution (burn-in). Second, we need to be
able to confirm that the chain is sampling from the correct
distribution (convergence). Third, we need to decide whether
a sufficient number of samples has been drawn to allow a
reliable estimate of the posterior distribution (effective sample
size). Fourth, we need a meaningful way of summarizing the
information in the samples from the posterior distribution
(summary statistics).

In order to remove the initial samples that represent
low-probability portions of the posterior distribution
(burn-in), we need to identify the point at which the MCMC
simulation is correctly drawing samples in proportion to
their posterior probability. This is known as sampling from
the stationary (or target) distribution. In practice, however,
it is not always clear when the Markov chain is actually
sampling from this target distribution. One approach is to
plot the posterior probability (known as a trace), and discard
the part of the chain where the posterior probability is still
climbing upwards (Nylander et al., 2008). This can be done
either using a subjective judgement or using more formal
convergence diagnostics (Brooks & Gelman, 1998).

Determining whether the MCMC: has converged on the
stationary distribution is a major practical and theoretical
problem (Huelsenbeck et al., 2002). Since the parameter
space is effectively infinite, we cannot guarantee that the
MCMC is sampling appropriately from the full range of the
posterior distribution. Independent replicates of the MCMC
analysis starting from different states could initially sample
from different parts of the posterior distribution, which would
lead to different date estimates if the analyses were stopped
too early. If separate MCMOC chains converge to the same
distribution, this is good evidence that they are sampling
from the stationary distribution (Gelman & Rubin, 1992).
For this purpose, checking for convergence should be done
with at least two chains, preferably more. The difference in
outcome between chains can be formally compared using
the potential scale reduction factor (PSRF), which compares
the variation of each parameter between different runs with
its average variability within runs (Gelman & Rubin, 1996).
This statistic should approach 1 as chains converge on a
similar result.
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Checking for MCMC convergence is quite straightforward
for continuous parameters of the hierarchical model, but less
so for the tree itself. There are several diagnostic methods that
have been implemented in the program AWTY (Nylander
et al., 2008; Warren, Geneva & Lanfear, 2017), and these are
most effective when comparing tree samples from multiple
independent MCMC analyses. Another way to check for
convergence in tree topology is to run two independent
MCMC simulations and report the average standard
deviation of split frequencies (ASDSF) between the trees
sampled in each (Ronquist ez al., 2012). Although this does
not directly assess the difference in date estimates, high values
of the ASDSF statistic would indicate dissimilarity between
the two sets of tree samples. In turn, this would suggest
that date estimates might also differ between chains, raising
doubts about convergence to the stationary distribution.

Once we have satisfied ourselves that the MCMC has
been sampling from the target distribution, we need to
ensure that we have drawn enough samples to allow us
to characterize the posterior distribution. We have to bear
in mind that successive states of the Markov chain are
autocorrelated — that is, samples drawn from close to each
other in the chain are likely to be more similar to each
other than samples drawn randomly from the posterior
distribution. As a consequence, we would typically need to
run the MCMC analysis for millions of steps to obtain enough
samples to allow us to estimate the posterior distribution
reliably. We can reduce the amount of disk space required
to store the samples from the MCMC analysis if we only
sample the chain occasionally, rather than at every step. This
process 1s known as thinning the chain. We can decrease the
frequency of sampling so that we only draw samples every
kth step of the chain (Raftery & Lewis, 1996), with the value
of k£ chosen so that the analysis produces about 10000 to
20000 samples.

To check whether we have drawn a sufficient number of
independent samples from the target distribution, we can
calculate the effective sample size (ESS) for each parameter,
the marginal likelihood, and the posterior probability. A
small ESS (<100) is typically interpreted to indicate that
the samples are not sufficient to provide an adequate
description of the posterior distribution (e.g. Drummond
et al., 2007), but much higher ESS values might be needed
to obtain 95% credibility intervals on parameter estimates.
If an unreasonably large number of samples is needed to
achieve a satisfactory ESS, then the MCMUC is considered
to exhibit poor mixing. This means that the MCMC: has
not made sufficient changes to the model and parameters to
have explored the parameter space adequately, leading to
a very slow decay in the autocorrelation between successive
samples. This can happen if the acceptance rate for proposals
(changes to the model or parameters) is too high or too low.
When too many proposals are accepted, the chain tends to
stay close to its current state and does not make large enough
changes that might cause it to sample from other regions
of parameter space. When too many proposals are rejected,
then the proposals are too ‘bold’, so that most proposals lead
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to states that have a much lower posterior probability than
the current state. This is inefficient because the MCMC: will
spend a lot of time making proposals that it will reject.

The optimal acceptance rate can be considered to be
between 20 and 50%, depending on the type of proposal
being made (Roberts, Gelman & Gilks, 1997), but in
practice the proposal mechanism (‘operator’) could be
adjusted until the acceptance rate is somewhere between
15 and 70%. Diagnosing and resolving MCMC: problems
can be very difficult, especially in parameter-rich analyses
of large data sets. Poor MCMC mixing can be due to
overparameterization, inefficient proposal mechanisms, and
other factors (Rannala, 2002).

Because Bayesian methods produce a posterior probability
distribution for all parameters, we have a natural way to
report the uncertainty in all aspects of the results. Once
we have collected an appropriate sample from the target
distribution, we can summarize the posterior distributions
of key model parameters, such as the node times. This is
typically done by presenting a measure of central tendency of
the distribution of values, such as the mean or median, along
with a measure of the spread, such as the 95% credibility
interval (the range of values that contains the central 95%
of the values in the posterior distribution). In addition to
reporting the results of a particular dating analysis, it may
be appropriate to report the range of date estimates that
are obtained under more than one combination of models
and priors. For example, if different calibration schemes
give different estimates and there is no compelling way of
choosing between the two, then both sets of estimates should
be considered. If there are many models of equal fit to the
data, then a formal model averaging approach could be
used. If this i1s not possible, then one way to acknowledge the
uncertainty in model choice is to report the range of results
obtained across the candidate models.

Summarizing the whole sample of phylogenetic trees and
the set of all node ages requires different techniques. If the
tree topology is fixed, then the posterior distribution of each
node can be treated as an ordinary continuous parameter.
One approach is to select a single tree from those that have
been sampled from the posterior distribution, such as that
with the highest likelihood [maximum likelihood (ML) tree]
or highest posterior probability [maximum a posterior: (MAP)
tree]. An alternative approach is to find the maximum clade
credibility (MCC) tree. This corresponds to the tree with the
highest overall branch support, as indicated by the product
of posterior probabilities across the tree (Drummond &
Rambaut, 2007). This method has been shown to have good
performance compared with other tree summary methods
(Heled & Bouckaert, 2013). The posterior distribution for
cach node age in the MCC tree can be reported using only
the ages of matching clades from the posterior. Consequently,
the nodes for clades with low posterior probability will tend to
have high uncertainty. An alternative is to compute common
ancestor heights, which involves obtaining the time to the
most recent common ancestor for every pair of taxa for all
of the sampled trees. These values provide an estimate of
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the posterior distribution for the corresponding nodes in the
MCC tree (Heled & Bouckaert, 2013).

A widely used method of summarizing the posterior
distribution of trees is to compute a ‘majority consensus
tree’, which contains only clades present in at least 50%
of the trees sampled from the posterior. Other nodes are
treated as unresolved and are represented by polytomies
(Ronquist et al., 2012). Since this consensus tree has not
actually been sampled from the posterior distribution, the
posterior probability of the consensus tree might be very low,
even though individual clades in this consensus tree might
have high support (Cranston & Rannala, 2007). However,
the presence of polytomies is problematic for estimating
divergence dates.

If the dating analysis combines multiple gene trees without
producing a single species tree, there are a range of strategies
for reporting the date estimates. One approach is to provide
the minimum or maximum date estimates for a specific node
across all of the gene trees (Maddison & Knowles, 2006;
Mossel & Roch, 2008). Alternatively, the tree topology can
be summarized prior to producing the date estimates, for
example using the average ranks of coalescence times as an
estimate of the species tree (Maddison & Knowles, 2006;
Mossel & Roch, 2008; Liu et al., 2009).

X. CONCLUSIONS

(1) Bayesian phylogenetic methods are widely used to
estimate evolutionary timescales using genetic sequence data.
They allow the joint estimation of phylogenetic relationships,
divergence times, and evolutionary (or demographic)
parameters. A wide range of models have been developed
for Bayesian molecular dating, creating a challenging task
for users of these methods, because there are many decisions
to be made in designing an analysis.

(2) Bayesian molecular dating will always carry a hefty
burden of uncertainty and subjectivity. Models and priors
are principled oversimplifications at best, and the results
need to be carefully considered in the light of model
assumptions, the influence of priors, and the conflicting
claims of other evidence. But Bayesian molecular dating
also provides a means of accommodating and reporting
this uncertainty through making the assumptions and priors
explicit, investigating and comparing a range of models, and
appropriately summarizing the results.

(3) Priorities for future improvements to Bayesian
molecular dating include methods for handling genome-scale
data, improving ways of incorporating fossil data, increasing
the biological accuracy of models, and developing reliable
methods for testing model fit and model adequacy.

(4) The amount of sequence data is no longer a limiting
factor for many molecular dating analyses, but massive
data sets bring new analytical challenges. The efficiency
of Bayesian dating methods needs to keep up with the
explosive growth of genomic data, particularly for dealing
with variation between gene trees in multi-locus data
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sets. Steps to improve the efficiency of these analyses will
include effective implementations of parallel computing and
multi-chain analyses, as well as the application of improved
MCMC samplers.

(5) Models for molecular dating have increased markedly
in their sophistication, but models are often chosen for
their statistical tractability rather than biological realism.
Better understanding of the patterns and rates of molecular
evolution will inform the development of more realistic tree
priors and models of branch rates.

(6) One of the most valuable lines of research is the
improvement of methods for incorporating calibrating
information from geological evidence and other sources of
information on evolutionary rates. This is not simply a matter
of increasing the quality and quantity of calibrations in dating
analyses, but more intelligently incorporating independent
temporal information in a way that allows us to get the most
out of the data.

(7) There has been a growing recognition of methods for
model averaging and testing model adequacy in molecular
dating and phylogenetics. The field would benefit from
accepted protocols for the evaluation of molecular date
estimates, and convenient tests for the influence of choices of
models and priors should be more widely adopted.

(8) Molecular dating is an irreplaceable and valuable tool in
evolutionary biology. But like most things in biology, it turns
out to be a lot more complicated than we might have hoped.
In the coming years, there is likely to be continued growth
in the amount of genomic data, calibrating information,
computational power, and statistical methods, which should
pave the way to an unprecedented level of knowledge about
molecular evolution and of the history of life on earth.
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