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Summary

1. Patterns of trait distribution on phylogenies bear the imprint of the macroevolutionary mechanisms that have
shaped them. Phylogenetic metrics can be used to summarize these patterns and potentially could be used to
uncover the macroevolutionary mechanisms. However, their utility has been limited by the difficulty in construct-

ing proper null distributions of phylogenetic metrics.

2. Here, we present an efficient algorithm to construct the null distributions by generating phylogenies under a
trait state-dependent speciation and extinction model, with a fixed number of extant taxa with a given trait state

and a fixed sampling fraction of taxa with each trait state.

3. We also provide a pipeline for estimating the false-positive rate and the statistical power of tests on phyloge-
netic metrics. These are implemented into an R package called PHYLOMETRICS.

4. PHYLOMETRICS also provides a tractable means of assessing model inadequacy in model-fitting approaches that
have been widely used to test hypotheses about trait state-dependent diversification processes.

Key-words: binary state speciation—extinction, diversification, phylogenetic metrics, R language,

trait evolution, tree simulation

Introduction

Patterns of trait distribution on phylogenies have the potential
to reveal macroevolutionary mechanisms (Jablonski 2008;
Rabosky & McCune 2010). For example, a trait that is widely
dispersed on a phylogeny and mapped to many tips but few
internal edges has been interpreted as a sign of ‘negative lineage
selection’, where a trait reduces the likelihood that a lineage
with that trait will persist or speciate (e.g. Agnarsson et al.
2006; Tripp & Manos 2008; Schwander & Crespi 2009; Ana-
cker et al. 2011; Bromham 2014). There are two general
approaches to inferring macroevolutionary mechanisms from
trait distribution: model-fitting and phylogenetic metrics.
Model-fitting approaches allow researchers to test a range
of models of trait-dependent diversification and ask which pro-
vides the best fit to the observed phylogenetic distribution of
traits, evaluated within a likelihood framework. (e.g. Mad-
dison, Midford & Otto 2007; Freckleton, Phillimore & Pagel
2008; Paradis 2008). Much of the recent focus has been direc-
ted at derivatives of the binary state speciation—extinction
model (BiSSE: Maddison, Midford & Otto 2007), which pro-
mises a way of untangling the trait influence on diversification.
However, in common with all model-fitting approaches, a
comparison of likelihoods does not in itself evaluate the overall
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goodness-of-fit of the model to the data. The best-fit model is
not necessarily a good description of the underlying processes
that produced the observed data. Therefore, model-fitting
approaches should ideally be used with tests of model ade-
quacy that have the potential to reject some or all models as
inadequate explanations of the data (Bromham, Hua &
Cardillo 2016).

Metric-based approaches use particular measures of the
phylogenetic distribution of traits to distinguish a significant
macroevolutionary pattern by comparing the measures to
proper null distributions (Schwander & Crespi 2009; Fritz &
Purvis 2010). Compared to model-fitting approaches, metric-
based methods have been limited in the extent to which they
can reveal macroevolutionary mechanisms for two reasons.
First, it is hard to construct a null distribution of a metric, par-
ticularly for metrics sensitive to trait prevalence, as no efficient
algorithm is currently available to generate a large number of
phylogenies of a fixed number of tips under trait-dependent
speciation and extinction (Stadler 2011). Secondly, different
macroevolutionary mechanisms could lead to similar patterns
of trait distribution on phylogenies, so we need to estimate the
false-positive rate and the statistical power of a test on a metric
to detect macroevolutionary processes under alternative
macroevolutionary models. Despite these limitations, metric-
based approaches have some advantages over model-fitting
approaches. Metric-based approaches reject models by
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absolute criteria, so they have the potential to test for model
adequacy. The approaches also require relatively short calcula-
tion time and have the ability to compare metric values across
many different phylogenies, allowing the evaluation of the
generality of some macroevolutionary mechanisms.

In this application note, we describe the r package PHYLO-
METRICS. PHYLOMETRICS aims to provide (i) an efficient algo-
rithm to simulate phylogenies of a fixed number of extant taxa
under trait-dependent speciation and extinction; (ii) a pipeline
for estimating the false-positive rate and the statistical power
of tests on phylogenetic metrics; (iii) a diagnostic test to assess
model inadequacy of model-fitting approaches.

The pHYLOMETRICS package

The R package PHYLOMETRICS includes two main functions:
‘treesim’ and ‘treestat’. Function treesim generates phyloge-
netic trees with a binary trait given a fixed number of extant
taxa and a fixed sampling fraction of taxa with each state.
The simulation uses binary state birth-death model (Mad-
dison, Midford & Otto 2007), defined by six parameters (trait
state is coded as 0 and 1): speciation rate for state 0 (Ag), spe-
ciation rate for state 1 (A;), extinction rate for state 0 (L),
extinction rate for state 1 (i), transition rate from state 0 to
state 1 (qo1) and transition rate from state 1 to state 0 (qio).
Four additional input values are the number of sampled
extant taxa of each state and the sampling fraction of each
state. The simulation algorithm is described in the
Appendix S1 (Supporting information).

Function treestat conducts a significance test on a phyloge-
netic metric given two options for null models of trait evolu-
tion: a trait distributed randomly across tips or a trait evolving
under the threshold Brownian motion developed by Felsen-
stein (2005). The treestat function reads trees generated by the
treesim function. To apply the function on an empirical phy-
logeny, users can use the package ape (Paradis, Claude &
Strimmer 2004) for loading phylogenetic trees. For trees
loaded by ape, trait state of each tip on a tree is read as a list of
tip labels with state 1, or as a vector of state 0 and 1 in the same
order as the tip.labels of the tree class. The phylogenetic metric
is loaded from a function. The function can be any of the met-
ric functions included in the package or any metric that users
can write as a function, with the state vector and the tree class
as the first two inputs. We illustrate how to write a metric func-
tion and use treestat with the function in the Appendix S1,
using the example of the gamma statistic that is used to detect
changes in the diversification rate over time (Fig. S1 in
Appendix S1).

PHYLOMETRICS currently includes four metrics that were
tested for their ability to detect traits that arise often but then
cause their own disappearance, due to either a raised lincage
extinction rate or a high trait loss rate (see Bromham, Hua &
Cardillo 2016):

1. Tip age rank sum (TARS) tests whether the tips with the
trait of interest (state 1) tend to be shorter or longer than those
without (state 0), using the Wilcoxon rank-sum test.

2. Number of tips per origin (NoTO) tests whether the mini-
mum number of inferred origins required to explain the pattern
of trait distribution is significantly different from that expected
under a null model of trait evolution.

3. Sum of sister clade differences (SSCD) tests whether the
trait of interest is more or less clustered on a phylogeny than
expected under a null model of trait evolution (Fritz & Purvis
2010).

4. Fritz and Purvis D statistic (FPD) calculates the difference
between observed SSCD and expected SSCD under Brownian
motion, scaled by the difference between SSCD under random
distributions of the trait across the tips of the phylogeny and
SSCD under Brownian motion (Fritz & Purvis 2010).

Estimating false-positive rate and statistical
power

To use PHYLOMETRICS to estimate the ability of a test on a phy-
logenetic metric to detect a macroevolutionary process of inter-
est, the first step is to design the test and construct the null and
alternative macroevolutionary models. For example, if a trait
is gained often but then lost often by extinction or trait rever-
sal, its distribution on the phylogeny should be characterized
by many independent evolutionary origins, each giving rise to
relatively few descendants with the trait, and thus, the number
of tips per reconstructed origins (NoTO) of the trait should be
lower than expected under the null model where the trait does
not have a raised extinction or loss rate. So we can design a test
based on NoTO by simulating 1000 sets of trait distributions
on the phylogeny under a threshold Brownian motion model
and applying a one-tailed test, asking whether the value of
NoTO for the trait is lower than over 95% the simulated trait
distributions. We define the null model as a ‘Baseline’ model
where the trait does not affect speciation and extinction rates,
and trait gain and loss rates are equal. We considered three
alternatives models: ‘Labile’, where the trait is frequently
gained and lost; ‘Dead-End’, where the trait increases the
extinction rate; and ‘Suicide’, where trait is gained frequently
and causes a raised extinction rate.

The next step is to set the parameter values of the null and
alternative macroevolutionary models. Here, we set parameter
values arbitrarily for each model.

pars_baseline <-¢(0.1,0.1,0.01,0.01,0.01,0.01)
pars_labile <-¢(0.1,0.1,0.01,0.01,0.1,0.1)
pars_deadend <-¢(0.1,0.1,0.01,0.1,0.01,0.01)
pars_suicide <-¢(0.1,0.1,0.01,0.1,0.3,0.01)

The third step is to simulate phylogenetic trees under the null
and alternative macroevolutionary models using function tree-
sim. Consider an example with 100 extant taxa with trait and
200 extant taxa without trait, where 60% of the taxa with trait
were included in the phylogeny and 50% of the taxa without
trait were included. We want to simulate 100 trees under each
model.

tree_baseline <- replicate(100, treesim (pars_baseline, 200*
0.5, 100*%0.6, ¢(0.5, 0.6)), simplify =F)
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tree_labile <- replicate(100, treesim (pars_labile, 200*0.5,
100*0.6, ¢(0.5, 0.6)), simplify = F)

tree_deadend < - replicate(100, treesim (pars_deadend, 200*
0.5, 100%0.6, ¢(0.5, 0.6)), simplify = F)

tree_suicide <- replicate(100, treesim (pars_suicide, 200*
0.5, 100*0.6, ¢(0.5, 0.6)), simplify = F)

The final step is to run the test on the metric for each simu-
lated tree under each macroevolutionary model using function
treestat. The function allows users to specify the null model of
trait evolution, the number of traits simulated under the null
model and the direction of the alternative hypothesis. In this
example, we simulate, for each tree, 1000 sets of trait distribu-
tions using the threshold Brownian motion model (“TBM)
and apply a one-tailed test on NoTO, asking whether the num-
ber of tips per reconstructed origin is lower than expected.

stat_baseline < - lapply(tree_baseline, treestat, func =noto,
traitevol="TBM",a = 1000, alternative ="less")
stat_labile <- lapply(tree_labile, treestat, func=noto,
traitevol="TBM",a = 1000, alternative ="less")
stat_deadend <- lapply(tree_deadend, treestat, func=
noto, traitevol="TBM",a = 1000, alternative ="less")
stat_suicide <- lapply(tree_suicide, treestat, func=noto,
traitevol="TBM",a = 1000, alternative ="less")

The output is a list of P-values for each macroevolutionary
model. The test on NoTO is significant when the P-value is less
than the user-defined significance level, for example 0-05. For
trees simulated under the Baseline (null) model, the proportion
of significant results is the false-positive rate (the rate at which
the test on NoTO rejects the null model when it is true). For
trees simulated under each alternative model, the proportion
of significant results is the power of test on NoTO to reject the
null model when the alternative model is true. This statistical
power is different from the power of NoTO to distinguish one
alternative model from another. But it can suggest the ability
to distinguish different alternative models if the power is high
under one model and low under the others.

Assessing model inadequacy

Inferring evolutionary models using model-fitting approaches
such as the BiSSE method (Maddison, Midford & Otto 2007)
can have enhanced false-positive rate due to phylogenetic pseu-
doreplication and violations of model assumptions (Maddison
& FitzJohn 2015; Rabosky & Goldberg 2015). Since likelihood
ratios do not provide absolute criteria to reject a model, we need
an additional diagnostics to assess model inadequacy (Rabosky
& Goldberg 2015). Because phylogenetic metrics summarize
aspects of tree topology and trait distribution, they can be used
to test whether the observed tree could have been generated by
a given model, because the trait distribution on the observed
tree should fall within the range generated by simulations under
that model. Therefore, a significant departure of the observed
metric value from the distribution of simulated values leads to
the rejection of the macroevolutionary model as being adequate
to explain patterns in trait distribution in the observed data.
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The assessment of model adequacy starts with tree simula-
tion using treesim under the macroevolutionary model
suggested by the model-fitting approach. The value of the
metric of trait distribution on each simulated tree and the
observed tree is then calculated by treestat. Here, we use tree-
stat to test whether the observed trait distribution (state_obs)
on the observed phylogeny (tree_obs) has significantly higher
or lower NoTO than trees (tree_sim) simulated under the
model selected by the model-fitting approach.

stat_obs < - treestat(tree_obs, state = stateobs, func =noto)
stat_sim <-lapply(tree_sim, treestat, func=noto)

p-value <-min(sum(stat_sim <=stat_obs),  sum(stat_sim
>=stat_obs))/length(stat_sim)

If the p.value is less than 0-05, we can conclude that the
observed NoTO value falls outside 95% the distribution of
NoTO values generated under that model, so the model is unli-
kely to have produced the observed metric value. We therefore
reject that model as being adequate at significant level 0-05.

While we can use this test to reject a model as being ade-
quate, it is important to know that failure to reject a model does
not imply that the model is a fair description of the data. Our
tree simulation tool is conditioned on the trait prevalence in the
observed data set, so it is restricted to exploring the outcome of
models given a fixed trait prevalence, and cannot be used to ask
how likely that particular pattern of trait prevalence is under
the macroevolutionary model being tested. If the test fails to
reject the model as being adequate, then other approaches,
such as forward tree simulation (FitzJohn 2012) or BiSSE like-
lihood functions (Maddison, Midford & Otto 2007), are
needed to assess how often we expect the macroevolutionary
model to generate trees with the observed trait prevalence.

Alternatively, our backward tree simulation allows efficient
implementation of an approximated Bayesian computation
approach (Marjoram et al. 2003). As suggested by Stadler
(2011), trees can be simulated under a proposed set of parame-
ters, and then different metrics can be used to decide whether
the simulated trees match the observed data in various ways. If
so, those parameter values are added to the posterior distribu-
tion. A new set of parameters is then proposed and the proce-
dure is iterated until a desirable sample size is reached. To save
computation time, the prior distribution of parameters can be
defined by the posterior distribution generated by model-fitting
approaches, such as the BiSSE method (Maddison, Midford &
Otto 2007).

Strengths and alternatives

The package PHYLOMETRICS provides the first method for sim-
ulating phylogenies under trait-dependent speciation and
extinction in a backward fashion. This backward simulation
assures that all the simulated phylogenies have the same
number of extant taxa with the same trait prevalence and tip
sampling fractions as the observed data. These properties are
essential to construct an informative null distribution for
metrics whose values are sensitive to trait prevalence. Metrics
describing tip length (e.g. TARS) or distribution of inferred
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: criteria. But the method is time-consuming and becomes
o _| mBaseline forward ® Baseline backward ® Labile backward | . . . .
© | impractical when there are many different patterns of trait
f f/ prevalence that are likely outcomes of the macroevolutionary
3 Labile 1 i i i
o . L model being tested. For example, our backward simulation
=4 - m backward | & p .
o S takes about 0-06 s to generate a tree under the Baseline
= 2 2 5 memes -__H]]( | Baseline [ model and 0-10 s under the Labile model, while the forward
o backward [ . . . . s . C g . s
5 I / tree simulation (using ‘simulate’ function in ‘diversitree’ r
Qo Baseline o
E 3- »—}ﬂl{ b i ’/ package; Fltquhn 2012) takes .12-81 s to generate a tree
z under the Baseline model and fails to generate a tree under
200 1;° h1|00 " 50 0 the Labile model after several days.
renclieng A shortcoming of our backward simulation is that it gener-
o - . .
T T T T T ates more rare trees than the forward simulation. For example,
250 200 _159 ~100 0 if backward simulation leads to two basal branches with differ-
Time ent trait states, the algorithm continues until coalescence, no
Fig. 1. Comparisons of trees generated under backward simulation matter how rare it could be if trait transition rate is much lower
and forward simulation. Lineage-through-time plots of trees simulated than speciation rate (e.g. the Baseline model). In contrast, for-
under the Baseline model using forward simulation (dark grey) and ward simulation starts with the root, so it does not constrain

using backward simulation (Black), and under the Labile model using the state of basal branches. As a result. the backward simul-
backward simulation (light grey), together with boxplots of branch ) ’

lengths in all the trees simulated under each scenario, show differences tion produces longer basal branches waiting for rare events to
in basal branch lengths between the two simulation tools and between occur than the forward simulation under the Baseline model
the two models. (Fig. 1), which causes overestimations in extinction rates and
biased estimations in trait transition rates (Fig. 2). These biases
reduce under the Labile model (Fig. 2), since trait lability

trait origins (e.g. NoTO) belong to this kind of metrics. Met- makes different states of basal branches equally likely and so
rics such as these have been used to describe macroevolu- the backward simulation does not produce long basal branches
tionary patterns, but their utility has been limited by the (Fig. 1). One way to prevent backward simulation from gener-
difficulty in generating an appropriate null distribution. An ating rare trees is to discard trees that do not coalesce for a cer-
alternative way to simulate phylogenies with the same num- tain amount of time. This can be done by setting a value to
ber of taxa and trait prevalence is to simulate a large number ‘max.t’ in the treesim function. It would be preferable to use a
of phylogenies and discard phylogenies that do not meet the likelihood value as the criterion for acceptance probability of a
Speciation 0 Speciation 1 Extinction O Extinction 1 Transition 0 Transition 1
o _ ] o 4 o Tff o 4] 0 - 7o)
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==== True parameter values = Median of the maximum likelihood estimates over trees

Fig. 2. Histograms of the maximum likelihood estimates for the six parameters in the Baseline model and the Labile model from trees simulated
using backward simulation and forward simulation. The true parameter values are marked by grey dashed lines. The medians of the maximum likeli-
hood estimates are marked by black solid lines. Maximum likelihood estimates are derived from the BiSSE likelihood function (Maddison, Midford
& Otto 2007) using ‘diversitree’ (FitzJohn 2012).
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tree, but there is no closed-form expression for the state-depen-
dent birth-death processes, making the simulation inefficient.
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Appendix S1.Tree simulation algorithm and an example of working
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