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Summary

1. Patterns of trait distribution on phylogenies bear the imprint of the macroevolutionarymechanisms that have

shaped them. Phylogenetic metrics can be used to summarize these patterns and potentially could be used to

uncover themacroevolutionarymechanisms.However, their utility has been limited by the difficulty in construct-

ing proper null distributions of phylogenetic metrics.

2. Here, we present an efficient algorithm to construct the null distributions by generating phylogenies under a

trait state-dependent speciation and extinction model, with a fixed number of extant taxa with a given trait state

and a fixed sampling fraction of taxa with each trait state.

3. We also provide a pipeline for estimating the false-positive rate and the statistical power of tests on phyloge-

netic metrics. These are implemented into an R package called PHYLOMETRICS.

4. PHYLOMETRICS also provides a tractable means of assessingmodel inadequacy inmodel-fitting approaches that

have beenwidely used to test hypotheses about trait state-dependent diversification processes.

Key-words: binary state speciation–extinction, diversification, phylogenetic metrics, R language,

trait evolution, tree simulation

Introduction

Patterns of trait distribution on phylogenies have the potential

to reveal macroevolutionary mechanisms (Jablonski 2008;

Rabosky &McCune 2010). For example, a trait that is widely

dispersed on a phylogeny and mapped to many tips but few

internal edges has been interpreted as a sign of ‘negative lineage

selection’, where a trait reduces the likelihood that a lineage

with that trait will persist or speciate (e.g. Agnarsson et al.

2006; Tripp & Manos 2008; Schwander & Crespi 2009; Ana-

cker et al. 2011; Bromham 2014). There are two general

approaches to inferring macroevolutionary mechanisms from

trait distribution: model-fitting and phylogenetic metrics.

Model-fitting approaches allow researchers to test a range

ofmodels of trait-dependent diversification and askwhich pro-

vides the best fit to the observed phylogenetic distribution of

traits, evaluated within a likelihood framework. (e.g. Mad-

dison, Midford & Otto 2007; Freckleton, Phillimore & Pagel

2008; Paradis 2008). Much of the recent focus has been direc-

ted at derivatives of the binary state speciation–extinction
model (BiSSE: Maddison, Midford & Otto 2007), which pro-

mises a way of untangling the trait influence on diversification.

However, in common with all model-fitting approaches, a

comparison of likelihoods does not in itself evaluate the overall

goodness-of-fit of the model to the data. The best-fit model is

not necessarily a good description of the underlying processes

that produced the observed data. Therefore, model-fitting

approaches should ideally be used with tests of model ade-

quacy that have the potential to reject some or all models as

inadequate explanations of the data (Bromham, Hua &

Cardillo 2016).

Metric-based approaches use particular measures of the

phylogenetic distribution of traits to distinguish a significant

macroevolutionary pattern by comparing the measures to

proper null distributions (Schwander & Crespi 2009; Fritz &

Purvis 2010). Compared to model-fitting approaches, metric-

based methods have been limited in the extent to which they

can reveal macroevolutionary mechanisms for two reasons.

First, it is hard to construct a null distribution of a metric, par-

ticularly for metrics sensitive to trait prevalence, as no efficient

algorithm is currently available to generate a large number of

phylogenies of a fixed number of tips under trait-dependent

speciation and extinction (Stadler 2011). Secondly, different

macroevolutionary mechanisms could lead to similar patterns

of trait distribution on phylogenies, so we need to estimate the

false-positive rate and the statistical power of a test on a metric

to detect macroevolutionary processes under alternative

macroevolutionary models. Despite these limitations, metric-

based approaches have some advantages over model-fitting

approaches. Metric-based approaches reject models by*Correspondence author. E-mail: xia.hua@anu.edu.au
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absolute criteria, so they have the potential to test for model

adequacy. The approaches also require relatively short calcula-

tion time and have the ability to compare metric values across

many different phylogenies, allowing the evaluation of the

generality of somemacroevolutionarymechanisms.

In this application note, we describe the R package PHYLO-

METRICS. PHYLOMETRICS aims to provide (i) an efficient algo-

rithm to simulate phylogenies of a fixed number of extant taxa

under trait-dependent speciation and extinction; (ii) a pipeline

for estimating the false-positive rate and the statistical power

of tests on phylogenetic metrics; (iii) a diagnostic test to assess

model inadequacy ofmodel-fitting approaches.

The PHYLOMETRICS package

The R package PHYLOMETRICS includes two main functions:

‘treesim’ and ‘treestat’. Function treesim generates phyloge-

netic trees with a binary trait given a fixed number of extant

taxa and a fixed sampling fraction of taxa with each state.

The simulation uses binary state birth–death model (Mad-

dison, Midford & Otto 2007), defined by six parameters (trait

state is coded as 0 and 1): speciation rate for state 0 (k0), spe-
ciation rate for state 1 (k1), extinction rate for state 0 (l0),
extinction rate for state 1 (l1), transition rate from state 0 to

state 1 (q01) and transition rate from state 1 to state 0 (q10).

Four additional input values are the number of sampled

extant taxa of each state and the sampling fraction of each

state. The simulation algorithm is described in the

Appendix S1 (Supporting information).

Function treestat conducts a significance test on a phyloge-

netic metric given two options for null models of trait evolu-

tion: a trait distributed randomly across tips or a trait evolving

under the threshold Brownian motion developed by Felsen-

stein (2005). The treestat function reads trees generated by the

treesim function. To apply the function on an empirical phy-

logeny, users can use the package APE (Paradis, Claude &

Strimmer 2004) for loading phylogenetic trees. For trees

loaded by ape, trait state of each tip on a tree is read as a list of

tip labels with state 1, or as a vector of state 0 and 1 in the same

order as the tip.labels of the tree class. The phylogenetic metric

is loaded from a function. The function can be any of the met-

ric functions included in the package or any metric that users

can write as a function, with the state vector and the tree class

as the first two inputs.We illustrate how to write a metric func-

tion and use treestat with the function in the Appendix S1,

using the example of the gamma statistic that is used to detect

changes in the diversification rate over time (Fig. S1 in

Appendix S1).

PHYLOMETRICS currently includes four metrics that were

tested for their ability to detect traits that arise often but then

cause their own disappearance, due to either a raised lineage

extinction rate or a high trait loss rate (see Bromham, Hua &

Cardillo 2016):

1. Tip age rank sum (TARS) tests whether the tips with the

trait of interest (state 1) tend to be shorter or longer than those

without (state 0), using theWilcoxon rank-sum test.

2. Number of tips per origin (NoTO) tests whether the mini-

mumnumber of inferred origins required to explain the pattern

of trait distribution is significantly different from that expected

under a null model of trait evolution.

3. Sum of sister clade differences (SSCD) tests whether the

trait of interest is more or less clustered on a phylogeny than

expected under a null model of trait evolution (Fritz & Purvis

2010).

4. Fritz and Purvis D statistic (FPD) calculates the difference

between observed SSCD and expected SSCD under Brownian

motion, scaled by the difference between SSCD under random

distributions of the trait across the tips of the phylogeny and

SSCDunder Brownianmotion (Fritz & Purvis 2010).

Estimating false-positive rate and statistical
power

To use PHYLOMETRICS to estimate the ability of a test on a phy-

logeneticmetric to detect amacroevolutionary process of inter-

est, the first step is to design the test and construct the null and

alternative macroevolutionary models. For example, if a trait

is gained often but then lost often by extinction or trait rever-

sal, its distribution on the phylogeny should be characterized

by many independent evolutionary origins, each giving rise to

relatively few descendants with the trait, and thus, the number

of tips per reconstructed origins (NoTO) of the trait should be

lower than expected under the null model where the trait does

not have a raised extinction or loss rate. So we can design a test

based on NoTO by simulating 1000 sets of trait distributions

on the phylogeny under a threshold Brownian motion model

and applying a one-tailed test, asking whether the value of

NoTO for the trait is lower than over 95% the simulated trait

distributions. We define the null model as a ‘Baseline’ model

where the trait does not affect speciation and extinction rates,

and trait gain and loss rates are equal. We considered three

alternatives models: ‘Labile’, where the trait is frequently

gained and lost; ‘Dead-End’, where the trait increases the

extinction rate; and ‘Suicide’, where trait is gained frequently

and causes a raised extinction rate.

The next step is to set the parameter values of the null and

alternative macroevolutionary models. Here, we set parameter

values arbitrarily for eachmodel.

pars_baseline<- c(0.1,0.1,0.01,0.01,0.01,0.01)

pars_labile<- c(0.1,0.1,0.01,0.01,0.1,0.1)

pars_deadend<- c(0.1,0.1,0.01,0.1,0.01,0.01)

pars_suicide<- c(0.1,0.1,0.01,0.1,0.3,0.01)

The third step is to simulate phylogenetic trees under the null

and alternative macroevolutionary models using function tree-

sim. Consider an example with 100 extant taxa with trait and

200 extant taxa without trait, where 60% of the taxa with trait

were included in the phylogeny and 50% of the taxa without

trait were included. We want to simulate 100 trees under each

model.

tree_baseline <- replicate(100, treesim (pars_baseline, 200*

0.5, 100*0.6, c(0.5, 0.6)), simplify=F)
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tree_labile <- replicate(100, treesim (pars_labile, 200*0.5,

100*0.6, c(0.5, 0.6)), simplify=F)

tree_deadend<- replicate(100, treesim (pars_deadend, 200*

0.5, 100*0.6, c(0.5, 0.6)), simplify=F)

tree_suicide <- replicate(100, treesim (pars_suicide, 200*

0.5, 100*0.6, c(0.5, 0.6)), simplify=F)

The final step is to run the test on the metric for each simu-

lated tree under each macroevolutionary model using function

treestat. The function allows users to specify the null model of

trait evolution, the number of traits simulated under the null

model and the direction of the alternative hypothesis. In this

example, we simulate, for each tree, 1000 sets of trait distribu-

tions using the threshold Brownian motion model (‘TBM’)

and apply a one-tailed test onNoTO, asking whether the num-

ber of tips per reconstructed origin is lower than expected.

stat_baseline<- lapply(tree_baseline, treestat, func=noto,

traitevol="TBM", a = 1000, alternative="less")
stat_labile <- lapply(tree_labile, treestat, func=noto,

traitevol="TBM", a = 1000, alternative="less")
stat_deadend <- lapply(tree_deadend, treestat, func=

noto, traitevol="TBM", a = 1000, alternative="less")
stat_suicide <- lapply(tree_suicide, treestat, func=noto,

traitevol="TBM", a = 1000, alternative="less")

The output is a list of P-values for each macroevolutionary

model. The test onNoTO is significant when theP-value is less

than the user-defined significance level, for example 0�05. For
trees simulated under the Baseline (null) model, the proportion

of significant results is the false-positive rate (the rate at which

the test on NoTO rejects the null model when it is true). For

trees simulated under each alternative model, the proportion

of significant results is the power of test on NoTO to reject the

null model when the alternative model is true. This statistical

power is different from the power of NoTO to distinguish one

alternative model from another. But it can suggest the ability

to distinguish different alternative models if the power is high

under onemodel and low under the others.

Assessingmodel inadequacy

Inferring evolutionary models using model-fitting approaches

such as the BiSSE method (Maddison, Midford & Otto 2007)

can have enhanced false-positive rate due to phylogenetic pseu-

doreplication and violations of model assumptions (Maddison

& FitzJohn 2015; Rabosky & Goldberg 2015). Since likelihood

ratios do not provide absolute criteria to reject amodel, we need

an additional diagnostics to assess model inadequacy (Rabosky

& Goldberg 2015). Because phylogenetic metrics summarize

aspects of tree topology and trait distribution, they can be used

to test whether the observed tree could have been generated by

a given model, because the trait distribution on the observed

tree should fall within the range generated by simulations under

that model. Therefore, a significant departure of the observed

metric value from the distribution of simulated values leads to

the rejection of themacroevolutionarymodel as being adequate

to explain patterns in trait distribution in the observed data.

The assessment of model adequacy starts with tree simula-

tion using treesim under the macroevolutionary model

suggested by the model-fitting approach. The value of the

metric of trait distribution on each simulated tree and the

observed tree is then calculated by treestat. Here, we use tree-

stat to test whether the observed trait distribution (state_obs)

on the observed phylogeny (tree_obs) has significantly higher

or lower NoTO than trees (tree_sim) simulated under the

model selected by themodel-fitting approach.

stat_obs<- treestat(tree_obs, state=stateobs, func=noto)

stat_sim<- lapply(tree_sim, treestat, func=noto)

p.value<-min(sum(stat_sim<=stat_obs), sum(stat_sim

>=stat_obs))/length(stat_sim)

If the p.value is less than 0�05, we can conclude that the

observed NoTO value falls outside 95% the distribution of

NoTO values generated under that model, so themodel is unli-

kely to have produced the observed metric value. We therefore

reject that model as being adequate at significant level 0�05.
While we can use this test to reject a model as being ade-

quate, it is important to know that failure to reject amodel does

not imply that the model is a fair description of the data. Our

tree simulation tool is conditioned on the trait prevalence in the

observed data set, so it is restricted to exploring the outcome of

models given a fixed trait prevalence, and cannot be used to ask

how likely that particular pattern of trait prevalence is under

the macroevolutionary model being tested. If the test fails to

reject the model as being adequate, then other approaches,

such as forward tree simulation (FitzJohn 2012) or BiSSE like-

lihood functions (Maddison, Midford & Otto 2007), are

needed to assess how often we expect the macroevolutionary

model to generate trees with the observed trait prevalence.

Alternatively, our backward tree simulation allows efficient

implementation of an approximated Bayesian computation

approach (Marjoram et al. 2003). As suggested by Stadler

(2011), trees can be simulated under a proposed set of parame-

ters, and then different metrics can be used to decide whether

the simulated trees match the observed data in various ways. If

so, those parameter values are added to the posterior distribu-

tion. A new set of parameters is then proposed and the proce-

dure is iterated until a desirable sample size is reached. To save

computation time, the prior distribution of parameters can be

defined by the posterior distribution generated bymodel-fitting

approaches, such as the BiSSEmethod (Maddison,Midford&

Otto 2007).

Strengths and alternatives

The package PHYLOMETRICS provides the first method for sim-

ulating phylogenies under trait-dependent speciation and

extinction in a backward fashion. This backward simulation

assures that all the simulated phylogenies have the same

number of extant taxa with the same trait prevalence and tip

sampling fractions as the observed data. These properties are

essential to construct an informative null distribution for

metrics whose values are sensitive to trait prevalence. Metrics

describing tip length (e.g. TARS) or distribution of inferred
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trait origins (e.g. NoTO) belong to this kind of metrics. Met-

rics such as these have been used to describe macroevolu-

tionary patterns, but their utility has been limited by the

difficulty in generating an appropriate null distribution. An

alternative way to simulate phylogenies with the same num-

ber of taxa and trait prevalence is to simulate a large number

of phylogenies and discard phylogenies that do not meet the

criteria. But the method is time-consuming and becomes

impractical when there are many different patterns of trait

prevalence that are likely outcomes of the macroevolutionary

model being tested. For example, our backward simulation

takes about 0�06 s to generate a tree under the Baseline

model and 0�10 s under the Labile model, while the forward

tree simulation (using ‘simulate’ function in ‘diversitree’ R

package; FitzJohn 2012) takes 12�81 s to generate a tree

under the Baseline model and fails to generate a tree under

the Labile model after several days.

A shortcoming of our backward simulation is that it gener-

ates more rare trees than the forward simulation. For example,

if backward simulation leads to two basal branches with differ-

ent trait states, the algorithm continues until coalescence, no

matter how rare it could be if trait transition rate is much lower

than speciation rate (e.g. the Baseline model). In contrast, for-

ward simulation starts with the root, so it does not constrain

the state of basal branches. As a result, the backward simula-

tion produces longer basal branches waiting for rare events to

occur than the forward simulation under the Baseline model

(Fig. 1), which causes overestimations in extinction rates and

biased estimations in trait transition rates (Fig. 2). These biases

reduce under the Labile model (Fig. 2), since trait lability

makes different states of basal branches equally likely and so

the backward simulation does not produce long basal branches

(Fig. 1). One way to prevent backward simulation from gener-

ating rare trees is to discard trees that do not coalesce for a cer-

tain amount of time. This can be done by setting a value to

‘max.t’ in the treesim function. It would be preferable to use a

likelihood value as the criterion for acceptance probability of a
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Fig. 2. Histograms of the maximum likelihood estimates for the six parameters in the Baseline model and the Labile model from trees simulated

using backward simulation and forward simulation. The true parameter values aremarked by grey dashed lines. Themedians of themaximum likeli-

hood estimates are marked by black solid lines.Maximum likelihood estimates are derived from the BiSSE likelihood function (Maddison,Midford

&Otto 2007) using ‘diversitree’ (FitzJohn 2012).

Fig. 1. Comparisons of trees generated under backward simulation

and forward simulation. Lineage-through-time plots of trees simulated

under the Baseline model using forward simulation (dark grey) and

using backward simulation (Black), and under the Labile model using

backward simulation (light grey), together with boxplots of branch

lengths in all the trees simulated under each scenario, show differences

in basal branch lengths between the two simulation tools and between

the twomodels.
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tree, but there is no closed-form expression for the state-depen-

dent birth–death processes, making the simulation inefficient.
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Appendix S1.Tree simulation algorithm and an example of working

with user-definedmetrics.
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